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a b s t r a c t

The metabolic theory of ecology (MTE) has attracted great interest because it proposes an

explanation for species diversity gradients based on temperature-metabolism relation-

ships of organisms. Here we analyse the spatial richness pattern of 73 coral snake species

from the New World in the context of MTE. We first analysed the association between ln-

transformed richness and environmental variables, including the inverse transformation

of annual temperature (1/kT ). We used eigenvector-based spatial filtering to remove the

residual spatial autocorrelation in the data and geographically weighted regression to

account for non-stationarity in data. In a model I regression (OLS), the observed slope

between ln-richness and 1/kT was �0.626 (r2 ¼ 0.413), but a model II regression generated

a much steeper slope (�0.975). When we added additional environmental correlates and

the spatial filters in the OLS model, the R2 increased to 0.863 and the partial regression

coefficient of 1/kT was �0.676. The GWR detected highly significant non-stationarity, in

data, and the median of local slopes of ln-richness against 1/kT was �0.38. Our results

expose several problems regarding the assumptions needed to test MTE: although the slope

of OLS fell within that predicted by the theory and the dataset complied with the

assumption of temperature-independence of average body size, the fact that coral snakes

consist of a restricted taxonomic group and the non-stationarity of slopes across

geographical space makes MTE invalid to explain richness in this case. Also, it is clear that

other ecological and historical factors are important drivers of species richness patterns

and must be taken into account both in theoretical modeling and data analysis.

ª 2008 Elsevier Masson SAS. All rights reserved.
1. Introduction ecological and evolutionary hypotheses have been developed
Broad scale gradients in species richness are one of the best

documented ecological patterns and have been known since

the early days of biogeography and ecology (Hawkins, 2001,

2004). Because of the long history of research, multiple
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during the last 200 years to explain geographical patterns in

richness. However, many hypotheses are conjectural, redun-

dant or untestable, and efforts to reduce the number of

hypotheses into a minimum set of testable and more plausible

ones have accelerated in the last few years (see Jetz and
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Rahbek, 2001; Whittaker et al., 2001; Hawkins et al., 2003a,b;

Willig et al., 2003; Hawkins, 2004; Mittelbach et al., 2007).

Simultaneously, workers have tried to generate specific

predictions to test these hypotheses, under a more hypo-

thetical-deductive approach (Currie et al., 2004).

More recently, in the context of the metabolic theory of

ecology (MTE hereafter, see Brown et al., 2004), Allen et al.

(2002) proposed that ln-transformed species richness is

a linear function of annual temperature inversely rescaled

(1/kT, where k is Boltzman’s constant and T is temperature in

Kelvin), and for which the slope is between �0.6 and �0.7

(referring to the model version presented in Brown et al., 2004;

see also Allen et al., 2006; Hawkins et al., 2007a). A more recent

version of the theory applied to diversity gradients tries to

explicitly link diversification rates and temperature variation,

under Kimura’s neutral theory of molecular evolution (Allen

et al., 2006; Gillooly and Allen, 2007). The proponents of the

theory also argue that MTE accounts for diversity gradients

over a range of spatial scales, from mountains slopes to

continental and global gradients, and for many groups of

plants and ectothermic animals (Allen et al., 2002; Brown

et al., 2004).

Metabolic theory has been criticized based on several

grounds (Muller-Landau et al., 2006; van der Meer, 2006;

Hawkins et al., 2007a), and its application to the study of

diversity gradients has been extremely controversial as well.

Algar et al. (2007) showed that for several datasets in North

America (some of then previously analyzed by Allen et al.,

2002) the relationship between ln-transformed richness and

temperature is actually curvilinear, so slopes vary systemati-

cally in geographic space. Cassemiro et al. (2007) expanded

this approach by showing that even when the MTE prediction

of a linear relationship between ln (richness) and temperature

(Allen et al., 2002) was met for New World amphibians, the

slopes were spatially variable using a geographically weighted

regression (GWR) approach (see Foody, 2004; Wang et al., 2005;

Bickford and Laffan, 2006). This problem can appear because

of non-stationarity in the data, i.e. the relationship between

variables can vary systematically from one locality, or region,

to another (Cassemiro et al., 2007). Thus, in GWR slopes

consistent with MTE may be found in some regions but not in

others, and this apparently follows the conjecture proposed

by Hawkins et al. (2003b) (see also Whittaker et al., 2007) in

which energy is thought to be the limiting factor in temperate

regions, whereas water is more important in tropical regions.

This leads to the question of incorporating other environ-

mental variables into the analysis and evaluating the partial

role of temperature in respect to these other variables.

Hawkins et al. (2007a) evaluated a large number of datasets

for a wide range of organisms in different parts of the world

with variable spatial extents and grain sizes and found

minimal support for the model of Allen et al. (2002). Out of 46

data sets, the prediction of linear relationships between

temperature and richness with a slope within the predicted

range was attained in only one case using OLS regression (and

in no cases using model II regression), and the slopes were

widely dispersed, being both positive and negative and with

a mean close to zero (see also Gillooly and Allen, 2007; Latimer,

2007; Hawkins et al., 2007b). However, neither Hawkins et al.

(2007a) nor Latimer (2007) used GWR to investigate variation in
the relationship between ln-richness and temperature

expressed as 1/kT across geographical space.

Another criticized aspect of the metabolic theory concerns

the assumptions used to test the ln-richness vs. 1/kT rela-

tionship. According to Allen et al. (2002), the predicted slope

would be attained for ectotherms at broad scales if the abun-

dance and average body size are invariant along temperature

gradients. However, as pointed out by Hawkins et al. (2007a),

neither Allen et al. (2002) nor subsequent studies (e.g., Hunt

et al., 2005; Roy et al., 2006) have tested for these two

assumptions. Also, Allen et al. (2002) pointed out that model

assumptions are ‘‘. not expected to hold true for groups that

are narrowly defined .’’ (Allen et al., 2002: 1546), but Algar et al.

(2007) found support for the theory in a narrowly defined group

of beetles. Indeed, given the restricted conditions for which the

theory would be attained and the paucity of abundance and

body size data for unrestricted taxonomic groups at large

scales, it is currently unrealistic to expect a test that fulfils all

assumptions of the metabolic theory.

Given the controversies around the MTE, we performed

a detailed analysis of spatial patterns of species richness for

New World coral snakes, with the main purpose to evaluate

the relationship between richness and temperature expressed

as 1/kT. The analyses performed here present two main

novelties regarding the recent discussion involving MTE. First,

we empirically assessed for one of the assumptions that MTE

proponents stress to be necessary for testing the �0.65

prediction, i.e., that the average body size should be inde-

pendent of temperature (see Allen et al., 2002) at broad spatial

scales (Gillooly and Allen, 2007). Second, by using GWR

approach, we examine whether regression slopes between ln-

richness and 1/kT remain around the MTE prediction of �0.65

at local scales. Also, we investigate for the relative importance

of 1/kT along with five other environmental variables to

explain the richness pattern of coral snakes. Although we

found a slope close to MTE predictions taking into account

both the effect of other alternative hypotheses and spatial

autocorrelation, a large degree of non-stationarity in the

relationship between richness and temperature was also

observed. Our findings allow a better understanding about the

domains and data statements currently used to test MTE

applied to broad scale richness gradients.
2. Materials and methods

2.1. Data

We generated the geographic distributions of 73 species of

New World coral snakes (Leptomicrurus, Micruroides and

Micrurus spp.), based on 2547 individual records. Occurrence

data were compiled based on voucher specimens held in

North America (American Museum of Natural History – New

York, Field Museum of Natural History – Chicago, Museum of

Natural History – Los Angeles, Louisiana Museum of Natural

Science – Baton Rouge, Museum of Vertebrate Zoology – Ber-

keley, Smithsonian Institution – Washington D.C., and Texas

Memorial Museum – Austin), and South American museums

(Coleção Herpetológica da Universidade de Brası́lia – Brası́lia,

Colección Herpetológica Corrientes – Corrientes, Colección
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Herpetológica de la Fundación Miguel Lillo – Tucumán,

Colección Herpetológica de Zoologı́a de Vertebrados de la

Universidad Nacional de Rı́o Cuarto – Córdoba, Museo de

Ciencias Naturales Bernardino Rivadavia – Buenos Aires,

Instituto Butantan – São Paulo, Museo de História Natural Noel

Kempff Mercado – Santa Cruz de la Sierra, Museo Nacional de

Historia Natural del Paraguay – Asunción, Museu Paraense

Emilio Goeldi – Pará, Museo de La Plata – La Plata, Museu

Nacional – Rio de Janeiro, and Museu de Zoologia da Uni-

versidade de São Paulo – São Paulo). We supplemented our

data sets with records that were georeferenced from Campbell

and Lamar (2004). In this case, we were careful not to include

pseudo-replicated records (i.e., the same record from

a voucher specimen and from Campbell and Lamar, 2004). The

number of records for each species varied from 1 to 217.

To test the condition that MTE can only be used to explain

diversity gradients of ectotherms when average body mass is

held constant across samples or communities, we obtained

data of maximum total length for each species from Campbell

and Lamar (2004). Considering that snakes grow indetermi-

nately (Partridge and Coyne, 1997; Olalla-Tárraga et al., 2006)

and the masses of reptiles are rarely available in the literature,

maximum values of length have been considered to be

a reasonable estimate of size for snakes (Reed, 2003; Olalla-

Tárraga et al., 2006). Also, it has been suggested that both body

length and body mass have similar results in analyses of

macroecological patterns (Olalla-Tárraga et al., 2006).

Maximum total lengths were log-transformed, and we calcu-

lated average body size in each cell of a geographic grid (see

below).

2.2. Modeling species distributions

For species with less than 20 occurrence records (27 species),

geographic distributions were established using a simple

minimum convex polygon, and presence/absence of species

were recorded in a grid with 4187 cells of 1� of latitude and

longitude covering the New World. These species are usually

very restricted and have small geographic ranges.

Geographic ranges of species for which 20 or more occur-

rence records were available (46 species) were modeled using

GARP (genetic algorithm for rule set production) (Stockwell

and Noble, 1992; Stockwell and Peters, 1999). GARP is one of

the many available niche-based species distribution models,

or ecological niche models (ENM) (see Segurado and Araújo,

2004; Elith et al., 2006; Pearson et al., 2007; Tsoar et al., 2007;

Costa et al., 2007), which currently play a central role in many

areas of ecology, conservation and evolutionary biology, both

because they can fill gaps in knowledge and because they

allow a better estimate of multiple components of species

diversity (Guisan and Zimmermann, 2000; Araújo and Guisan,

2006; Costa et al., 2007).

We used six environmental predictors in GARP (annual

mean temperature, temperature seasonality [coefficient of

variation], mean temperature of the driest quarter, annual

precipitation, precipitation seasonality [coefficient of varia-

tion] and precipitation of the warmest quarter), derived from

the WorldClim (http://www.worldclim.org), and three topo-

graphic predictors (altitude, aspect and slope), derived from

the Hydro-1K global digital elevation model (http://edcdaac.
usgs.gov/gtopo30/hydro). All predictors were reduced to

a grid resolution of 0.0417� (w1 km) for the analysis.

We implemented in GARP the best-subset model selection

procedure by generating 200 models, setting the convergence

limit to 0.001, a 0% extrinsic omission error, 10% commission

error, and 2000 maximum iterations. We then selected the 20

best models (i.e., the 20 models showing least omission error

and moderate commission error, see Anderson et al., 2003)

and summed them to generate a composite GARP prediction.

GARP methods were evaluated using AUC and ROC curves, an

approach extensively used in species’ distribution modeling

(see Allouche et al., 2006; Elith et al., 2006). To use this

analytical approach without a sample of true absence points,

Phillips et al. (2006) generated a sample of 10,000 pseudo-

absence points to join to the training sample and estimated

AUC derived from ROC curves of the new Maxent method. We

repeated the same procedure with the GARP predictions, since

true absence data were not available. We then recorded for

each species the area of occurrence predicted by GARP using

the threshold generated to ‘‘cut’’ the potential distribution

and produce a presence–absence matrix (0/1) for the 4187 cells

covering the New World. More than one species was present

in 1784 of these cells, so these were used for further statistical

analyses. Although ROC and AUC have been recently being

criticized (see Lobo et al., 2008; Peterson et al., 2008), they can

provide at least a preliminary indication of the usefulness of

the distribution models for identifying suitable areas of

occurrence for particular species (Elith et al., 2006), the over-

lapping of which will generate the richness patterns. Because

we are actually modeling richness and not individual ranges,

we expect that problems of threshold estimates do not qual-

itatively affect the outcomes (Wisz et al., 2007).

2.3. Environmental correlates of species richness

We used six environmental variables as correlates of coral

snake richness, capturing a range of aspects of climatic and

environmental variation and used in a series of papers dealing

with broad scales patterns in species richness (e.g., Rodrı́guez

et al., 2005; Hawkins et al., 2003a, 2005). We used variables

related to: ambient energy, measured by the Priestley–Taylor

equation of potential evapotranspiration (PET, see Lu et al.,

2005) and mean annual temperature (TEMP); water-energy

balance, expressed by annual actual evapotranspiration (AET)

(obtained from http://www.grid.unep.ch/data/summary.

php?dataid¼GNV183) and by mean monthly annual precipi-

tation (PREC); and ambient productivity, expressed by the Net

Primary Productivity (NPP). We also measured topographic

heterogeneity (RELEV) in cells, using as a surrogate the differ-

ence between minimum and maximum altitude with each

cell. See Rodrı́guez et al. (2005) for more detailed definitions

and sources for these environmental data.

It is important to note that environmental variables were

used to model species’ distributions, which were summed to

generate richness patterns and once again modeled using

environmental data to search for the main drivers in richness

and allow an evaluation of MTE. This could lead to a circularity

problem, but Wisz et al. (2007) recently pointed out that since

multiple geographic ranges, with distinct sizes and shapes,

tend to be modeled independently by different sets of

http://www.worldclim.org
http://edcdaac.usgs.gov/gtopo30/hydro
http://edcdaac.usgs.gov/gtopo30/hydro
http://www.grid.unep.ch/data/summary.php?dataid&equals;GNV183
http://www.grid.unep.ch/data/summary.php?dataid&equals;GNV183
http://www.grid.unep.ch/data/summary.php?dataid&equals;GNV183
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environmental variables and with different parameters, the

subsequent summing to generate richness patterns will

eliminate the unidirectional effects of a single variable on

summed ranges. Also, recent analyses of coral snake richness

for which ranges were estimated through polygons showed

that more than 50% of the variance in their richness in the

New World was explained by the same variables used here to

explain richness patterns based on niche models for estab-

lishing species’ distributions (L.C. Terribile, unpublished data).

So, richness may ultimately be affected by the environmental

factors acting on individual species’ geographic ranges in such

a way that this procedure may be viewed not as a bias (created

by tautological reasoning), but instead as a more accurate way

to understand environmental drivers of species richness (L.C.

Terribile, unpublished data).

2.4. Spatial analysis of species richness patterns

First, we evaluated our dataset in respect to the conditions

required to test MTE predictions. In the case of ectotherms, it

was stated that the effect of temperature on diversity would

be expressed when body size and abundance of these organ-

isms are kept constant across temperature gradients (Allen

et al., 2002). Here, we were not able to test for the abundance

condition due to the absence of data on coral snake abun-

dances, but our analyses for body size revealed that the

average body size variation of this group are not constrained

by the temperature gradient.

Brown et al. (2004) proposed that the relationship between

ln-transformed species richness and 1/kT has a slope between

�0.6 and�0.7 (see also Allen et al., 2006; Hawkins et al., 2007a).

Thus, annual mean temperature was expressed here as 1/kT

and was tested alone and together with the other five vari-

ables, and 95% confidence intervals of slopes allowed us to

test agreement with MTE predictions (but see Hawkins et al.,

2007b for a discussion about the validity of testing MTE

predictions by seeing whether 95% CI encompass the pre-

dicted slopes). For tests of temperature alone, both model I

and II regressions were used (see Hawkins et al., 2007a).

However, since spatial autocorrelation is usually found in this

type of data, and it creates biased Type I error estimates due to

inflation of degrees of freedom (see Legendre et al., 2002;

Diniz-Filho et al., 2003), ordinary least squares (OLS) regres-

sion models are not entirely adequate (but see Hawkins et al.,

2007c).

To examine the influences of other environmental corre-

lates on richness patterns, we generated environmental

models including multiple variables and used an AIC-based

approach (see Burnham and Anderson, 2004; Diniz-Filho et al.,

2008) for model selection. Specifically, besides calculating the

AIC of each model, we also computed its DAICi value (i.e.

DAICi ¼ AICi �minAIC; where DAICs > 10 represent poor fits,

and DAICs � 2 correspond to models equivalent to the best

model (Burnham and Anderson, 2004)) and Akaike’s weighting

(wi), an index representing the probability that model i is

actually the best explanatory model among all possible

models with six variables (i.e. 63 models). An average model

can then be obtained by a wi weighted average of coefficients

from all tested models, and this average is usually considered

more robust (Diniz-Filho et al., 2008). Finally, we can repeat
this modeling process after fixing the estimated value of

richness against the spatial filters (see below) to take auto-

correlation into account during the model selection

procedure.

We analysed spatial autocorrelation in richness and in OLS

standardized multiple regression residuals (see below) using

spatial correlograms of Moran’s I coefficients calculated at 20

distance classes (Legendre and Legendre, 1998; Diniz-Filho

et al., 2003). To account for spatial autocorrelation in

geographical data, many methods are now currently available

(see Diniz-Filho et al., 2003; Rangel et al., 2006). In this paper

we used two different approaches to deal more explicitly with

spatial components of richness data.

First, we used eigenvector-based spatial filtering (see Bor-

card and Legendre, 2002; Griffith, 2003; Borcard et al., 2004;

Diniz-Filho and Bini, 2005; Griffith and Peres-Neto, 2006; Bla-

mires et al., 2008). In this approach geographical coordinates

(latitude and longitude) of cells with more than one species

are used to build a connectivity matrix C expressing a ‘‘queen’’

connection system, which can be obtained in our grid by

linking neighboring cells whose centroids were situated less

than 200 km away (see Legendre and Legendre, 1998). The

connectivity matrix C was then submitted to a principal

coordinate analysis, which consists of performing an eigena-

nalysis of the double-centered matrix (Legendre and Legen-

dre, 1998).

The eigenvectors associated with positive eigenvalues of

the C matrix represent the spatial relationship among cells

covering the New World at different spatial scales. The first

eigenvectors represent broad scale variation, whereas eigen-

vectors derived from small eigenvalues represent fine-scale

variation. These vectors are then new orthogonal variables

(called filters by Griffith, 2003) that capture, at different scales,

the geometry of the grid covering the New World. They can be

incorporated into an OLS multiple regression approach, taking

into account spatial autocorrelation and allowing an alterna-

tive estimation of regression parameters (Diniz-Filho and Bini,

2005).

The next step of the analytical protocol includes the

selection of the eigenvectors that should enter in the

modeling process. Here we selected the filters (together with

the other correlates) with Moran’s I coefficients in the first

distance class greater than 0.1 (see Griffith, 2003; Diniz-Filho

and Bini, 2005) and added these eigenvectors to the multiple

regression model with environmental correlates, which

successfully removed all residual spatial autocorrelation.

An additional issue with respect to MTE is that the pre-

dicted slope of the relationship between ln-richness and 1/kT

should be found across different spatial scales of analyses

(Allen et al., 2002). However, as recently pointed out by Algar

et al. (2007) and Cassemiro et al. (2007), the relationships

between variables can vary systematically from one locality to

another (i.e., the relationships may be non-stationary). Most

regression models applied to macroecological patterns

assume that results apply equally to the entire study area, but

they may only provide an ‘‘average’’ of the relationships if

non-stationarity occurs in the data. Thus, the application of

models that quantify non-stationarity may be useful in

revealing more complex spatial structures in data and rela-

tionships between variables in multiple scales.
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To account for possible non-stationarity in the relationship

between richness and the environmental variables, we used

geographically weighted regression (GWR), following Casse-

miro et al. (2007). GWR has been recently applied in numerous

macroecological analyses (Fotheringham et al., 2002; Foody,

2004, 2005; Wang et al., 2005; Bickford and Laffan, 2006; see

also Jetz et al., 2005; Foody, 2005, for a discussion of the

interpretation of GWR in richness data). The advantage of

GWR is that instead of estimating a single slope that describes

a relationship, GWR generates one regression slope for each

locality, or ‘cell’ (called ‘local’ slopes) using a complex scheme

of spatial weights (see Fotheringham et al., 2002). These slopes

(as well as estimates for other regression parameters, such as

the r2) can then be mapped and used to investigate how the

relationship between variables changes across geographic

space. Also, GWR can be particularly important in relation to

rare, narrow ranging species for which results are most scale-

dependent, as pointed out by Foody (2004) and Jetz et al. (2005).

An F-statistic can be used to test for the improvement of GWR

over a standard OLS, taking into account the differences in

degrees of freedom between the two models, and the spatial

weightings for GWR can be defined by an adaptive kernel

function, with bandwidths interactively established using the

Akaike criterion (see Fotheringham et al., 2002 for details).

Finally, since the correlates used to generate the environ-

mental model include some ‘‘compounded’’ variables (e.g.,

AET and PET), the multicollinearity among them and other

‘‘primary’’ explanatory variables (i.e., mean temperature,

precipitation, topographic heterogeneity, and net primary

productivity) could lead to a tangled interpretation of the

importance of these predictors expressed on the regression

coefficients (Graham, 2003) (see the correlation matrix

between all environmental variables in Supplementary

Material). To investigate possible effects of multicollinearity,

we ran an OLS model just with ‘primary’ variables (i.e.,

MEAN1/kT, precipitation, topographic heterogeneity, and net

primary productivity), and then compared these coefficients

with those of the best AIC model including all variables.

All statistical analyses were performed in spatial analysis

in macroecology (SAM), freely available at http://www.

ecoevol.ufg.br/sam (Rangel et al., 2006).
3. Results

Coral snake species richness follows the well known lat-

itudinal pattern in the western hemisphere (Fig. 1A), with

higher richness found in northwestern South America. Over-

all, GARP showed good ability to predict geographic distribu-

tions of the species, with AUC values �0.92. The good

predictive performance of GARP models indicates that the

generated distributions can be used to estimate regional

species richness patterns.

In a simple model I regression, the observed slope between

ln-richness and 1/kT was �0.626 � 0.018 standard error (95%

CI ¼ 0.59–0.66), matching quite well MTE predictions (Fig. 1B).

More importantly, the predicted slope of MTE was found for

coral snakes in a broad spatial scale (i.e., New World) for

which the average body size variation was independent of

temperature across cells (R ¼ 0.044; P > 0.05). At first this
finding implies that richness in this ectothermic group is

determined by temperature following the MTE proposition.

However, there is substantial heterocedasticity caused by

a greater variation of richness in warm regions of Neotropics

(i.e., with low 1/kT values), so that a ‘constraint envelope’

commonly found in macroecological studies may better

describe the relationship (see also Cassemiro et al., 2007).

Thus, a linear regression model is not strictly adequate to

describe the richness data, and the r2 was not very high

(¼0.413). Adding a quadratic term caused minimal improve-

ment to the model fit (r2 ¼ 0.439). Further, using model II

regression generated a slope much steeper than predicted by

MTE (b ¼ � 0.975 � 0.018 standard error, CI95% ¼ 1.011–0.939).

There was significant spatial autocorrelation in model

residuals of the linear regression of ln-richness against 1/kT

(Fig. 2), with high positive Moran’s I coefficients up to the fifth

distance class (ca. 1500 km). Although confidence intervals of

regression slopes presented above are underestimated

because of the strong spatial autocorrelation in data, the

relationship remains significant at the 5% level after correct-

ing the degrees of freedom using Dutilleul’s procedure

(R ¼ � 0.642; df ¼ 10.3; P ¼ 0.022; see also Hawkins et al.,

2007a).

When adding other environmental correlates in the model

I regression, the AIC multimodel selection found one good

model (i.e., D � 2), which included all six correlates, and the R2

increased to 0.748. Temperature expressed as 1/kT was the

correlate with highest rank according to the average stan-

dardized coefficients (Table 1), although RELEV and AET are

also important to determine patterns of species richness and

greatly improved model fit (Table 1). However, some residual

autocorrelation still remained in the full OLS model, with

a Moran’s I in the first distance class equal to 0.290 (Fig. 2).

Adding spatial autocorrelation in the modeling process using

spatial filters did not produce a qualitatively different model

(i.e., all six correlates are still kept in the best model and have

the same relative importance, see Table 1). After incorporating

the 40 filters, most of the residual autocorrelation was taken

into account (i.e., with Moran’s I in the first distance class of

residuals ¼ 0.058). In this full model (i.e., composed of six

environmental correlates and 40 eigenvector filters), the R2

increased to 0.863 and the partial regression coefficient of 1/kT

was equal to �0.676.

When we ran the environmental model with only ‘primary’

variables (i.e., MEAN1/kT, precipitation, topographic hetero-

geneity, and net primary productivity), the R2 decreased to

0.680 in comparison with 0.748 from the full model with six

variables. Even so, the slope of MEAN1/kT was still very similar

(�0.640). Thus, though some multicollinearity could be

affecting the full model, this did not change our interpretation

that variables other than temperature alone are important

drivers of coral snake richness. More important, the analyses

based on AIC did not suggest removing any of the remaining

variables, even considering the spatial autocorrelation.

We then applied the GWR to detect non-stationarity in the

relationship between richness and other correlates and to

evaluate spatial patterns in regression parameters. There was

an improvement of GWR in respect to the OLS model (r2 of

GWR ¼ 0.943 against r2 ¼ � 0.626 of OLS, with an F ¼ 23.37

[P < 0.01] for the improvement of GWR over OLS). Thus,

http://www.ecoevol.ufg.br/sam
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Fig. 1 – Spatial pattern of species richness for 73 species of coral snakes in the New World (A) and the relationship between

ln-species richness and temperature, expressed as 1/kT (model I regression slope [ L 0.626) (B).
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a highly significant non-stationarity was detected in the

relationship. Indeed, local slopes of ln-richness against 1/kT

vary between �3.084 and þ1.634 across the New World, with

a median of �0.38 (Fig. 3), and few values fell in the interval

between �0.6 and �0.7 (Fig. 4). The explanatory power (r2) is

usually strong across the continent (Fig. 5), except in parts of

central Brazil, but the slopes of the local regression do not

have a clear spatial pattern (Fig. 3). Residuals of the GWR

contained minimal spatial autocorrelation (Moran’s I at the

first distance class equal to �0.072).
4. Discussion

At first sight the pattern of species richness in New World

coral snakes is consistent with MTE predictions, with a slope

of ln-richness against 1/kT of�0.626 in the model I regression,

within the expected range between �0.60 and �0.70. On the

other hand, model II regression generated a slope of �0.975.
The overall explanatory power of the model I is moderate (ca.

40%), and the bivariate relationship is a constraint envelope,

which generates differences between model I and II regres-

sion slopes. Recent studies have raised the question about

which statistical method should be used to test MTE (whether

model I or model II regression, see Hawkins et al., 2007a,b),

but it is difficult to know which is the best model without

knowing the true error of X (i.e., temperature), and the stan-

dard solution has been to check for both model I and II

regression (Brown et al., 2004; Hawkins et al., 2007a).

Furthermore, adding more environmental variables signifi-

cantly improved model fit. Even so, the partial slope of 1/kT is

also very close to the MTE prediction when using eigenvector

filtering to take spatial autocorrelation into account and

incorporating other correlates in the analysis. So, though our

analysis is in principle consistent with MTE predictions,

significant effects of AET and RELEV suggest that water-

energy dynamics and habitat heterogeneity (see Hawkins

et al., 2003a,b; Hawkins, 2004; O’Brien, 2006; Whittaker et al.,
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Fig. 2 – Spatial correlograms of Moran’s I spatial

autocorrelation coefficients for residual of the analyses,

including the residuals from a simple regression of ln-

richness against 1/kT, from a multiple regression of ln-

richness against environmental correlates, and from

multiple regression of ln-richness against full model (i.e.,

environmental correlates more 40 filters). The Moran’s I

spatial autocorrelation coefficient was 0.739 for richness

and L0.072 for GWR residuals in the first distance class.
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2007) are also important drivers of New World coral snake

richness patterns.

In a recent discussion about validity of MTE to explain

biodiversity, Gillooly and Allen (2007) argued that Hawkins

et al. (2007a) failed to support MTE for most datasets they

analyzed because they tested the theory and model with

data in which the assumptions were not entirely fulfilled

(even though tests were performed in the same way as in

Allen et al., 2002). Indeed, in some studies which the MTE

prediction was not attained, a priori tests for body size or

abundance-dependence on temperature were not performed

(e.g., Hunt et al., 2005; Roy et al., 2006), so one may claim

that if the empirical data do not attain the key assumptions
Table 1 – Summary of regressions analysis (OLS), including th
probability, using all environmental correlates, and environme
model without the filters, we represent the AIC wi-weighted av
the coefficients of all possible models (i.e., 63) with six correla
evapotranspiration; NPP – net primary productivity; PET – pote
1/kT – mean annual temperature expressed as 1/kT (where k is B
topographic heterogeneity

Environmental model*

Variable Slope Stand. coefficients Pro

AET 0.009 0.452 <0.

NPP 0.319 0.159 <0.

PET �0.005 �0.208 <0.

PREC 0.029 0.106 <0.

MEAN1/kT L0.689 L0.707 <0.

RELEV <0.001 0.479 <0.

* Model composed of six environmental correlates (R2 ¼ 0.748).

** Model composed of six environmental correlates and 40 eigenvector fi
of a theory, it could not be expected that the predictions of

this theory would be achieved. Nevertheless, the outcomes

of our analyses for coral snake richness clearly show a more

complex pattern in which testing the validity of assump-

tions of MTE is not a guarantee that theory does or does not

explain richness patterns.

Regarding the assumptions of MTE, the first important

result of our analyses is that average body size was not

correlated with temperature across cells (R ¼ 0.044; P > 0.05)

and are not well predicted by the full set of environmental

variables (R2 ¼ 0.264). Although some recent studies have

evaluated interspecific body size geographical gradients in the

context of Bergmann’s rule for ectotermal organisms (see

Olalla-Tárraga et al., 2006; Rodrı́guez et al., 2007), such

patterns were not found in coral snakes, possible because this

is a relatively homogeneous and relatively recent evolutionary

group. Since body size was not correlated with 1/kT and only

weakly with other correlates, no deviation from slopes pre-

dicted by MTE would be expected. Furthermore, the

geographic extent of our dataset encompasses a broad range

of temperatures across the New World, and this finding is an

additional condition for which the response of richness to

temperature is expected to show the predicted slope of MTE

(see Brown et al., 2004; Gillooly and Allen, 2007; Hawkins et al.,

2007b).

On the other hand, Allen et al. (2002) also pointed out that

reptiles are not a good group to test MTE, because of the

dependence between abundance and temperature, which also

violates MTE assumptions. Violations of this assumption are

actually very difficult to test, because of a lack of abundance

data at broad geographic scales, but reptiles usually have

temperature-dependent abundances.

Also, Allen et al. (2002) explicitly say that MTE predictions

are not expected in restricted groups of organisms, as in

a single genus or family, or in regions in which there is limited

variation in temperature. Our data set comprises a very

restricted group, with only three genera, though the validity of

Leptomicrurus has been questioned (some authors consider

Leptomicrurus a synonym of Micrurus, see Campbell and

Lamar, 1989, 2004), and the third genus Micruroides has only
e regression slopes, standardized coefficients, and
ntal correlates and spatial filters. For the environmental
eraged standardized coefficients resulting from averaging

tes. Environmental correlate codes are: AET – actual
ntial evapotranspiration; Prec – annual precipitation; Mean
oltzman’s constant and T is temperature in Kelvin); Relev –

Environmental model þ filters**

b. Slope Stand. coefficients Prob.

001 0.002 0.104 0.002

001 0.289 0.144 <0.001

001 <0.001 �0.001 0.968

001 0.015 0.045 0.026

001 L0.676 L0.693 <0.001

001 <0.001 0.475 <0.001

lters (R2 ¼ 0.863).



Fig. 3 – Distribution of partial regression slopes of 1/kT as correlate of ln-species richness for GWR local regressions. Cells

outlined in white indicate where GWR slopes match the predictions by MTE (i.e., slopes ranging between L0.6 and L0.7).
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one species. This observation casts serious doubt about the

validity of MTE to explain the richness pattern of these

snakes. Whether, in one hand, our dataset confirms the

theory (OLS slope of 1/kT ¼ � 0.626) in agreement with some

assumptions (i.e., average body size is constant across

temperature gradients), on the other hand these snakes are

not an ‘ideal’ group to confirm MTE, since they are

a ‘‘narrowly defined’’ (sensu Allen et al., 2002) group in which

abundances are regulated by temperature. This also shows

that the assumptions of MTE are not compelling and that the
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Fig. 4 – Frequency distribution of all GWR slopes across

1784 cells of New World. The arrow identifies the expected

value predicted by metabolic theory.
theory still deserves several improvements (see also Hawkins

et al., 2007a).

Finally, this refined analysis with coral snakes, compared

to the coarser one done by Hawkins et al. (2007a), can give

some insights to the methods and data statements required to

better evaluate MTE (see Ford, 2002; Hawkins et al., 2007b; del

Rı́o, 2008). The most important aspect is that GWR detected

strong non-stationarity in the data, so that the slope is highly

variable in space, as was recently also found for New World

amphibians (Cassemiro et al., 2007). However, unlike what

was found by Cassemiro et al. (2007), the range of slopes found

here for 1/kT is much wider, ranging from �3 to 1.6, which

means that there is no support for MTE in many parts of the

Neotropics. Values close to the prediction seem to be

randomly scattered around the continent. Besides, the

median value of GWR slopes is also far from �0.6. Thus, the

non-stationarity in coral snake richness patterns does not

support clearly the idea that energy becomes more important

in higher latitudes so that a better prediction of MTE is

expected in regions of cool climates (see also Whittaker et al.,

2007).

In addition, the relatively high explanatory power of AET

(a direct measure of joint availability of energy and water in

the environment and, consequently, an indirect indicator of

primary productivity) and topographic heterogeneity (Table 1)

suggest that effects of primary productivity (see Hawkins

et al., 2003b) and habitat heterogeneity are also important

drivers of coral snake richness in the New World. This finding

is consistent with the proposition of Hawkins et al. (2003b,

2007a), that energy alone is not the main driver of richness in
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some regions, but that the interaction between water and

energy provides a better explanation mainly in tropical

latitudes.

Thus, although our standard spatial analysis of patterns is

consistent with MTE, taking both autocorrelation and the

effect of multiple variables into account, a more detailed

analysis using GWR is not so supportative. In a confirmatory

view of scientific knowledge, matching slopes could be

important to support MTE. However, random spatial variation

of these slopes in geographic space and the match of MTE for

a dataset that violates some of its assumptions (i.e., the coral

snake genera Leptomicrurus, Micruroides and Micrurus are three

narrowly defined groups, and reptiles in general are able to

thermoregulate and usually have temperature-dependent

abundances) lead us to claim for a better evaluation of model

assumptions and to better define in which domain the theory

is expected to explain richness patterns (see also Hawkins

et al., 2007b). Even if one takes the model I regression results to

support MTE, it is clear that explanatory power of the theory is

low so that other ecological and historical factors (as pointed

out by Blackburn, 2004) can be important in driving species

richness patterns, and they must taken into account both in

theoretical modeling and data analysis.
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Sanders, N.J., Williams, P., 2007a. A global evaluation of
metabolic theory as an explanation for terrestrial species
richness gradients. Ecology 88, 1877–1888.

Hawkins, B.A., Diniz-Filho, J.A.F., Bini, L.M., Araújo, M.B., Field, R.,
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