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Abstract

Spatial conservation prioritization should seek to anticipate climate change impacts on biodiversity and to mitigate these
impacts through the development of dynamic conservation plans. Here, we defined spatial priorities for the conservation of
amphibians inhabiting the Atlantic Forest Biodiversity Hotspot that overcome the likely impacts of climate change on the
distribution of this imperiled fauna. First, we built ecological niche models (ENMs) for 431 amphibian species both for
current time and for the mid-point of a 30-year period spanning 2071–2099 (i.e. 2080). For modeling species’ niches, we
combined six modeling methods and three different climate models. We also quantified and mapped model uncertainties.
Our consensus models forecasted range shifts that culminate with high species richness in central and eastern Atlantic
Forest, both for current time and for 2080. Most species had a significant range contraction (up to 72%) and 12% of species
were projected to be regionally extinct. Most species would need to disperse because suitable climatic sites will change.
Therefore, we identified a network of priority sites for conservation that minimizes the distance a given species would need
to disperse because of changes in future habitat suitability (i.e. climate-forced dispersal) as well as uncertainties associated
to ENMs. This network also maximized complementary species representation across currently established protected areas.
Priority sites already include possible dispersal corridors linking current and future suitable habitats for amphibians.
Although we used the a top-ranked Biodiversity Hotspot and amphibians as a case study for illustrating our approach, our
study may help developing more effective conservation strategies under climate change, especially when applied at
different spatial scales, geographic regions, and taxonomic groups.
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Introduction

A wide range of evidences indicate climate change as one the

greatest threats to biodiversity in the 21th century [1]. Climate

change impacts, which may have already resulted in several recent

species extinction [2], are species-specific and produce shifts in

species phenology, ecological interactions, and geographical

distributions [3–4]. Global climate change poses new challenges

to biodiversity conservation especially because it induces species

range shifts yielding additional complexity and uncertainty to

definition and implementation of spatially oriented actions for

conservation investment [5]. Here we address this challenge by

developing spatial conservation plans that consider the likely

species’ range shifts under baseline and future climate scenarios.

Climate change effects on biodiversity depend on how species’

distribution will respond to such changes. These responses are

usually inferred trough ecological niche models (henceforth

ENMs) [6]. Currently, there are several methods for modeling

species occurrences as a function of environmental variables,

which is the standard approach used by ENMs (see Franklin [7]

and Peterson et al. [8], for recent reviews). Techniques for

generating ENMs range from very simple bioclimatic envelope

models up to complex machine learning-based methods [7].

However, model uncertainty arise from many sources, such as the

methods and the climate projections used to generate ENMs [9],

not to mention the limitations to model extrapolation in space and

time (i.e. model transferability), and how to evaluate model

performance [10].

The ongoing debate on model performance, statistical fit, and

transferability indicates that it is still difficult to determine the best

method for modeling species’ ecological niche, because the

outcome of these methods is strongly dependent on data

availability and geographic scale for which they have been

projected [11]. To cope with these issues, a combination of

different projections built upon different climatic conditions and

modeling methods – the ensemble forecasting approach – has

been suggested as more conservative than single model analysis

[9]. Ensembles of forecasts should be used when it is impossible to

determine which type of model should produce most accurate

predictions. Predictions from multiple models or from multiple

input data sets are usually averaged and weighted by model

accuracy. Thus, by combining different model projections, final

consensus may benefit from accurate models, although depending

on how model predictions are combined, poor model predictions

may cancel accurate models [12]. When applying ensemble of

forecasts the final solution is an unique consensus, weighted by
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overall statistical fit (e.g. TSS statistics, AUC values) of combined

models, from which is also possible to quantify and map model

uncertainties [13].

Ecological niche models can be useful to develop conservation

plans, especially in regions where complete information on species

distribution is not available or will not be in the future, as expected

in megadiverse countries [14]. Other studies have used ENMs for

conservation planning, however ENM uncertainties are rarely

incorporated (but see Carroll et al. [15], Wilson [16], for recent

examples). Therefore, it is still necessary to develop science-based

portfolios of spatial priorities in which species’ range shifts driven

by climatic changes are incorporated.

To improve spatial conservation planning one can map and

quantify species’ range shifts driven by climate change, measuring

how much (and in which direction) a species is expected to move,

and include this specific response in priority-setting analyses. For

example, a species that is highly sensitive to changes in climate

would either need (1) a larger conservation area compared to a less

sensitive species or (2) the conservation of an area that is currently

out of its geographic distribution. Species climate-forced dispersal

takes place when some species need to disperse to sites that will

become climatically suitable in the future because those in which

they currently occur are becoming unsuitable.

Here we used consensual projections of ENMs to generate a

nested ranking of priority sites for species conservation that

considers species climate-forced dispersal by minimizing the

distance a species would need to move to find a climatically

suitable site. We measured uncertainty associated to ENMs and

used it to minimize model uncertainties, favoring the inclusion of

low-uncertainty sites in conservation plans. We also considered the

current network of protected areas established in the region in our

analyses. Hence our plans complement the level of protection

already achieved in the region.

Methods

Geographic extent of the study
We focused our study in the Atlantic Forest. This natural

domain is a Biodiversity Hotspot given its high level of plant

endemism and a massive loss of it natural vegetation cover [17].

Originally extending over 1.5 million km2 along eastern Brazilian

coast, now only ca.11% of its natural cover remains [18], and only

7.2% of its remaining habitats are strictly protected in Brazil (I–IV

IUCN protected areas categories; [19]). Here we used the

historical Atlantic Forest domain extension [20] to acquire

information on species original climatic conditions.

Ecological niche models
We gathered information on geographic distribution (extent of

occurrence maps downloaded from iucnredlist.org/technical-

documents/spatial-data) of 431 amphibian species inhabiting the

Atlantic Forest. We used amphibians as our case study because

they are the most threatened vertebrate group on Earth [21],

being particularly sensitive to climate change [2]. They also need

urgent conservation actions in the Neotropics [22–23].

Systematic conservation planning demands spatially extensive

information on species distributions [24]. Although usually used,

point location data are sparse and often biased in their sampling

toward areas that are easily accessible, thus increasing omission

errors. For these reasons, here we used digital range maps to

generate a presence-absence matrix of amphibian occurrence in

the Atlantic Forest. This matrix, along with climate variables (see

bellow), was then used as our input data for building species’

ecological niche models (Fig. 1). The use of range maps as input

data to model species ecological niche is still incipient in the ENMs

literature (but see Diniz-Filho et al. [13], Lawler et al. [25], for

good examples). However, in regions of poor knowledge on species

distribution, and under high threat to biodiversity, such approach

may provide an initial identification of general priorities, which

can be revised after data improvement [26–28].

We compiled current climatic data from the WorldClim

database (worldclim.org/current), and future climatic scenarios

from the International Center for Tropical Agriculture (CIAT,

http://ccafs-climate.org), developed by IPCC’s Fourth Assessment

Report (AR4). We modeled species’ ecological niche as a function

of four climatic variables: annual mean temperature, temperature

seasonality (standard deviation *100), annual precipitation, and

precipitation seasonality (coefficient of variation). These variables

are often used to explain patterns of amphibian species richness

and distribution [29]. We used the following Atmosphere-Ocean

Global Circulation Models (hereafter AOGCMs) projected to the

mid-point of a 30-year period spanning 2071–2099 (i.e. 2080):

CCCMA-CGCM2 – developed by the Canadian Centre for

Climate Modeling Analysis, CSIRO-MK2 – developed by the

Australia’s Commonwealth Scientific and Industrial Research

Organization, and HCCPR-HadCM3 – built by the Hadley

Centre for Climate Predictions and Research’s General Circula-

tion Model. We choose these AOGCMs because they are widely

used in the literature, having also different equilibrium climate

sensitivity values ranging from 3.1uC to 4.4uC (see also Diniz-Filho

et al. [13], Nori et al. [30]). Equilibrium climate sensibility is the

annual mean surface air temperature change experienced by

climate system after it has attained a new equilibrium in response

to a doubling of CO2 concentration and are within the range of all

AOGCMs available from International Panel on Climate Change

(IPCC) [31].

We projected species’ distribution in a 0.160.1 latitude-

longitude grid (ca. 11 km size in the equator, totaling 11,461

equal-area grid cells). We used six modeling methods to built

ENMs: Generalized Linear Models (GLMs [32]), Generalized

Additive Models (GAMs [33]), Multivariate Adaptive Regression

Splines (MARS [34]), Genetic Algorithm for Rule Set Production

(GARP [35]), Random Forest (RF [36]), and Maximum Entropy

(MaxEnt [37]). These methods are commonly used to generate

ENMs, and details on each one of them can be found in Franklin

[7]. For each species, data were randomly divided into calibration

and validation sets, comprising 75 and 25% of the species’ range,

respectively. This procedure was repeated 50 times, maintaining

the observed prevalence of species in each partition (i.e. for

presence-only methods, 75% of the cells within the species’ range,

randomly defined; for presence-absence methods, we did the

analyses using a random sample of 75% of cells both inside and

outside species’ range).

We established a threshold of pseudo-absences for each model

to allow building the receiving operating curve (ROC) and

transforming quantitative predictions of models into a binary

vector of 0/1, indicating forecasted presences or absences in each

grid cell [38]. We established the cut-off point by using the

delimitation of bioclimatic envelope of 95%. We used True Skill

Statistics (TSS) as our measure of model statistical fit. Sensitivity

and specificity were calculated based on the probability threshold

for which their sum is maximized, not being affected by

prevalence. TSS values range from 21 to +1, where +1 indicates

perfect fit, minimizing overprediction and omission error rates;

values close to zero indicate performance worse than randomly

expected [38]. We combined all model outputs generating

ensemble-based frequencies of species distributions both for

current and future climates. We considered species as occurring
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in a given cell if at least 50% of models predict its occurrence there

(i.e. a majority consensus rule, see Diniz-Filho et al. [13]). Finally,

we also calculated species turnover for each combination of

modeling method, and AOGCM, which was based on the number

of potential species gained (G) or lost (L) within each cell, and

given by (G+ L)/(S+G), where S is the species richness of the cell in

the present [12,39].

We averaged the projections of species distributions across each

grid cell generating a species richness consensus map, as well as

coefficients of variation that allow mapping where uncertainty in

model projections is larger. To map uncertainties associated with

SDMs, we did a two-way Analysis of Variance (ANOVA) without

replication [40] to quantify variation associated to each source,

using species richness as response variable and modeling methods

and AOGCMs as factors [13]. We then obtained the sum of

squares, which can be attributed to each of these sources. As we

did the analyses for each grid cell covering the whole Atlantic

Forest, it was possible to map each variance component and

identify sites of low and high uncertainty [13]. We used the

estimated proportion of the sum of squares attributable to the two

sources in respect to total sum of squares (i.e. model uncertainty) as

a constraint in spatial prioritization analyses (see below).

Figure 1. Flowchart of stages on analysis and data inputs used in this study. Flowchart of stages on analysis and data inputs used in spatial
conservation planning approach designed to the Atlantic Forest Biodiversity Hotspot, Brazil, in the face of climate change.
doi:10.1371/journal.pone.0054323.g001
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Defining spatial conservation priorities for current time
and for 2080

For solving the ‘‘utility maximization’’ problem we identified

priority areas using the Zonation framework and software [41–42].

Zonation algorithm identifies sites primarily important for

retaining high-quality and connected habitats for several features

(e.g. species). It establishes a hierarchical ranking of conservation

priorities for all cells throughout the geographic space, minimizing

the loss of conservation value [41]. A cell is defined as ‘‘more

important’’ when its relative contribution to total conservation

value is the highest along the entire planning region. This level of

importance is the conservation value of that cell.

Mathematically, the function for calculating the marginal loss

(i.e. relative contribution of each cell to total conservation value)

transforms the representation of feature j in site i into a general

conservation value. There are different ways to calculate marginal

loss of a given site i (di). The basic way is shown in equation 1:

di~ max
j

qij : wj

Qj(S) : ci

ð1Þ

where qij is the representation level of feature j at site i (e.g.

proportion of species’ distribution in site i, in our case), wj is the

weight (or priority) of feature j, and ci is the cost of site i (ENM

uncertainty associated to site i, in our case). The term Qj(S) M Si

Sqij, is the proportion of original distribution of species j at the

remaining set of sites S.

Here we used a variant of Zonation (the additive benefit

function) that promotes representation of all species, favoring sites

with high species richness while considering species’ proportional

distribution in a given cell [41]. Then, marginal loss of each site i

was defined as a function of the sum for species-specific values that

occur in the grid cell [i.e. summing the result of equation (1) for all

species occurring at the cell, for all cells]. Here we calculate

marginal loss using additive benefit function [43], as follows:

di~
1

ci

:wj

X

j

DVj~
1

ci

wj

X

j

Vj Qj Sð Þ
� �

{Vj Qj S{figð Þ
� �� �

ð2Þ

In equation (2), marginal loss of cell i is simply the difference in

conservation value of cell i found between the value (Vj) in

remaining set as a priority (S) and the value (Vj) when the site i is

removed from solution (S - {i}). Repeated iteration of equation (2)

and removal of sites that generate the smallest loss of conservation

value (i.e. smallest marginal loss) produce a rank based on

complementarity, over the geographic space [42]. This rank is

used to map priority sites for conservation. The last removed site is

the one with the highest value of marginal loss, that is, the one that

contributes the most to feature conservation (see Moilanen et al.

[42], for more details). Note that this is a heuristic algorithm that

does not necessarily achieve a solution that is optimal, but often

near optimal. Yet, our problem is non-linear and very complex

(with 431 species and .11,000 sites). In such cases, the degree of

near-optimality associated to solutions is much less relevance given

that the plan would not be implemented at once.

We established weights to species according to their conserva-

tion status defined by the IUCN Red List [37]: non-threatened

species = 1, vulnerable and data deficient species = 2, endangered

species = 3, critically endangered species = 4. All other species had

weight = 1. Thus, weighting a critically endangered species as 4,

means that maximizing representation of this species in priority

sites is four times more important than doing so for a common

species (because weights are multiplicative, see equation 2). The

specific value of this weigh is arbitrary, although the transforma-

tion of IUCN Red List categories to an ordinal scale has been

already used in conservation [45], as well as in spatial planning

analyses (e.g. Gittleman [44], Loyola et al. [45]). Therefore,

sensitivity analyses to test the importance of weighting would be

required prior to utilization in a real-world conservation context.

Further, we included restricted protected areas (IUCN I-IV

categories) already established in the Atlantic Forest (data from

UNEP-WCMC [21]) in all spatial planning analyses (totaling 820

out of 11,461 grid cells). This means that our plans consider the

current network of protected areas and indicate sites in which

conservation investment should take place to complement the

actual system.

In addition, we used information on the percentage of natural

vegetation cover for each grid cell in all analyses as another

attribute to be represented. We assigned weight five to this feature.

We applied a weight for retaining natural vegetation higher than

those for threatened species for two main reasons. First, given the

lack of detailed information of habitat preferences for all species

we studied, and the coarse spatial resolution of our vegetation

layer (ca. 11 km), it was impossible to clip consensus species’

distributions to natural vegetation remnants (which would

diminish commission errors). Nevertheless, we controlled for

model overprediction securing that only sites with currently

available habitat to species survival and reproduction would be

included in the spatial plan. Second, indicating that sites with high

percentage of natural vegetation cover need to be retained means

that every result indicates priority sites only in areas in which there

are large remnants of natural vegetation to ensure real effective-

ness of spatial plans, if they would be applied.

As explained above, we also used model uncertainties arising

both from modeling methods and AOGCMs as a constraint in our

analyses. This component is useful to assess the exclusion/

inclusion effect of cell in priority site selection [46]. In our case,

the estimated proportion of sum of squares attributable to the two

sources in respect to total sum of squares, for each cell, was

included as a constraint (or a cost, technically), ci (see equation 1

and 2). Including uncertainties in ENMs as a constraint means that

sites for which there is low concordance among model projections

produced by different modeling methods or climate models should

not be prioritized because there is risk of misallocating scarce

conservation resources in places where the certainty about the

occurrence of species is low.

Accommodating climate-forced dispersal in spatial
conservation plans

Developing a dynamic spatial plan requires protecting impor-

tant areas for conservation both in current and future climates.

Here, assigned a high-conservation value only to sites that are

suitable for each species both in current and future climates [41],

because species distribution tends to be limited by contiguous

suitable habitats [47]. For this, we obtained centroids of each

species’ distribution projected for present and future. Then, we

assumed that Euclidean distance between current and future

centroids of species’ projected distribution could act as a measure

of the dispersal ability of a species (in time).

In this case, the Euclidean distance between these centroids

corresponds to a negative exponential function that describes

species dispersal from present to future, forced by climate change

[48], i.e. the distance that a species would need to move to find

suitable climatic conditions in the future. We then used species-

specific Euclidean distance between current and future distribution

centroids to derive a bi-dimensional model estimated on the basis

of the width of species-specific smoothing kernels (i.e. the distance

Spatial Conservation Planning under Climate Change
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a species would disperse under climatic changes, see Moilanen &

Kujala [41]). Hence, the connectivity value among neighbor sites

is directly proportional to occupancy level of species at the focal

site. We used the distribution smoothing method available in

Zonation to connect areas in agreement to surrounding area

suitability. The method considers species-specific requirements in

climate and dispersal capacity (based on smoothing kernels). The

result is a set of priority sites that are more clumped in space [41].

There are few reasons for which aggregating sites at this spatial

resolution would benefit species (especially considering extinction

risk and metapopulation dynamics [41]), but fundamentally, this is

the only way to include species climate-forced dispersal in analyses

done here.

Results

ENMs differed according to modeling methods and climate

models used to project species’ distributions (Fig. 2). Modeling

methods were responsible for 72% of variation in projections,

generating very distinct patterns of species richness. In general, all

methods indicate high species richness in the eastern part of

Atlantic Forest, with low species richness in southern and western

portions of the biome. Projections of GLM provide a clear

exception to this pattern, with richest areas concentrated in

northeast, both for current time and for 2080 (Fig. 2). All models

forecasted a general reduction in species’ ranges, which leads to a

decrease in the number of sites with high species richness.

Variation among models projected into the future (i.e. within

AOGCMs) was low, corresponding to only 0.5% of difference

among maps (Fig. 2). For most species, TSS values were relatively

high (TSS 6 SD = 0.6361.33) indicating good model fit.

Hereafter, we will focus our attention in the consensus map,

derived from the combination of all above-mentioned projections,

weighted by their model fit (models with higher TSS value have

more weight). Our consensus model forecasted range shifts that

Figure 2. Different amphibian richness patterns for current and future climates in the Atlantic Forest, Brazil. Patterns of amphibian
species richness projected by ecological niche models generated from different modeling methods (GLM, GAM, MARS, GARP, RF, and MaxEnt), and
climate models (AOGCMs) both for current time and the year 2080 in the Atlantic Forest Biodiversity Hotspot, Brazil.
doi:10.1371/journal.pone.0054323.g002

Spatial Conservation Planning under Climate Change

PLOS ONE | www.plosone.org 5 January 2013 | Volume 8 | Issue 1 | e54323



culminate with high species richness in central and eastern portion

of the biome, both for current time and for 2080 (Fig. 3 A–B,

respectively). Most species had a significant range contraction (up

to 72%; mean 6 SD = 3862.38%) and 12% of species were

projected to be regionally extinct. The western part of the biome is

expected to have fewer species in the future.

The interaction between modeling methods and AOGCMs

shows a different contribution to the geographically structured

variation around consensus solution. ENM uncertainty is higher in

southwest, but also along coastline (Fig. 3C). This means that,

while there is no expected gain in species richness in the west, our

models do not forecast the same effects of climate change in this

particular region. Although future scenarios did not show dramatic

changes in species richness, mean projected turnover was relatively

high throughout the biome, ranging from 0.04 to 0.89. Southern

and eastern Atlantic forest is expected to have high turnover rates

(Fig. 3D).

For practical purposes, here we show the top 17% of cells that

contribute the most to our conservation goal. The 17% of land

area target was recently proposed for conservation of terrestrial

ecosystems by the Convention on Biological Diversity [49]. It is a

general target aimed at providing a fixed level of protection

worldwide to be achieved by 2020. As it is a time-bound target

recommended to encourage countries to increase their level of

protected area coverage in the coming decade, coverage targets

may be higher in the future. Hence, our proposed priority area

network seeks only to meet the minimum target recommended for

2020 [49].

Priority sites for investment in amphibian conservation that

complements current established network of protected areas

Figure 3. Consensus species richness patterns for current and future climates in the Atlantic Forest, Brazil. Consensus maps of
amphibian species richness patterns for current time (A), and the year 2080 (B). Uncertainty level associated to ensemble of ecological niche models
(C), and spatial patterns of species turnover (D) in the Atlantic Forest Biodiversity Hotspot, Brazil.
doi:10.1371/journal.pone.0054323.g003
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differed when built upon present or future species distribution

(Fig. 4A–B). We reached a compromised solution when we

included species climate-forced dispersal in optimization proce-

dure (Fig. 4C, compare similar areas in Fig. 4A and B). This later

solution indicates a set of sites that are climatic suitable both in

present and future, and that are connected by the likely dispersal

distance species would be able to comprise during climatic

changes. Hence, it already includes possible dispersal corridors

linking current and future suitable climate in priority sites for

amphibian conservation. Moreover, it also includes a minimiza-

tion of errors associated with ENMs at remaining areas of native

vegetation (Fig. 4C). A full combination of these solutions is shown

in Fig. 4D.

Our results indicate that today we still need to protect at least an

additional 9.8% of the biome to meet the 17% target (blue sites in

Fig. 4A). If all priority sites proposed here only for the current time

were to be converted in protected areas during the next 70 years

we would reach such target. However, because of climate-driven

species’ range shifts, we would still need to protect an additional

1% of the Atlantic Forest to safeguard all amphibian species. For

this reason, the solution presented in Fig. 4C is the best option

among the ones we presented.

In addition to priority maps, curves plotting the performance of

solutions (Fig. 5) provide valuable insights on the relative

protection attained under different climatic contexts. The figure

shows the fraction of species distribution remaining against the

fraction of remaining sites in the Atlantic forest, as the algorithm

gradually eliminates cells with the smallest marginal loss. The

arrow in Fig. 5 indicates the tipping point where 83% of the biome

is lost (therefore retaining the best 17% of its land surface for

protection).

Figure 4. Priority sites for amphibian species conservation in the Atlantic Forest, Brazil. Top 17% of cell that should be prioritized if
conservation of amphibian species inhabiting the Atlantic Forest Hotspot, Brazil, is planned for the present (A), future (B), and if we consider species
climate-forced dispersal (from present to future, C). A full combination of these solutions is shown in Fig. 4D.
doi:10.1371/journal.pone.0054323.g004
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Discussion

Our analyses use a conservation biogeography approach [50] to

evaluate changes in species’ ranges as a function of climate change,

and to optimize priorities sites for conservation under such threat.

Instead of focusing on a particular species (e.g. an invasive species,

Nori et al. [30]), we evaluated the efficiency of conservation plans

as a function of environmental variables for a large number of

species. We believe our results convey important recommenda-

tions for environmental management and policy. Although we

used a top-ranked Biodiversity Hotspot and amphibians as a case

study for illustrating our approach, we believe this could help

developing effective conservation actions under a dynamic

assessment (like those expected in face of climate change).

Therefore, our approach may be applied to different spatial

scales, geographic regions, and taxonomic groups.

Some authors showed greater robustness of consensual models

when compared to a particular model [51–52]. The ensemble

forecasting approach minimizes the difficulty of establishing the

best criterion to evaluate performance of ecological niche models

[10]. Moreover, the central tendency of selected forecasts has

greater precision of species distribution since this consensus model

covers a full range of uncertainties [51]. Notice that 72% of

variation around of consensus model is due to different techniques

used to model species’ ecological niche and project their

distribution. Moreover, it gives an objective measurement of

uncertainty in the process, which can be mapped or, as done here,

used to generate a weighting scheme in spatial conservation

prioritization (see below).

Application of species’ ENMs assumes that species exhibit an

unlimited dispersal ability and absence of biological interactions

[53]. Thus, our models result from the interaction between

mechanisms operating at a broad spatial scale, given that species

distributions are driven only by environmental or climatic

conditions. Further, our modeling approach does not consider

any changes in shape and size of the biome itself [54]. Likewise, we

did not included neighboring species outside of biome that can

immigrate to Atlantic Forest due to climate change. Finally, coarse

scale data can over-exaggerate the impact of climate change on

species distribution [55].

Our results show that most species will likely experience a

significant range contraction in the future, and many others could

face extinction. The contraction of a species’ range is a reasonable

concern since it increases the probability of species extinction [56].

The clearest impact should occur along the coastal line and the

limits of the biome where we expect more changes in distribution.

In fact, changes in species richness are not expected to be high in

tropical regions given relatively short environmental gradients.

However, given that species inhabiting the tropics may have

narrower niches than their temperate counterparts, they are

potentially susceptible to even small alterations in climatic

conditions [57–58].

Although projections for the future cannot be truly validated

given the dynamic processes of natural systems [6], ENMs still

figure as the best strategy to obtain data that will be used into

conservation planning [59]. Predicting the future is obviously not

trivial, as it requires model extrapolation, so the effectiveness of

conservation strategies will depend on suitable habitats for species

both now and in the future [60]. Here, we addressed the problem

of incorporating species range shifts (climate-driven dispersal) in

spatial prioritization conservation. Our approach included the

minimization of distance between centroid of the range maps in

present and future. Spatial conservation plans will be obviously

more effective if the effects of climatic changes can be anticipated

[59]. Today, the number and location of networks of protected

area are still mostly based on current species distributions [61–62],

ignoring range shifts that should happen with climate changes.

Recently, some authors planned for species persistence over

time, considering a dynamic environment and planning for reserve

connectivity in fragmented landscape [4,14]. Game et al. [63], for

example, described strategies for climate change adaptation as part

of national conservation assessment in Papua New Guinea. In

particular they demonstrate that inclusion of climate refugia and

cross-environment connectivity would make possible to reduce the

amount of environmental change expected to take place inside

protected areas [63]. We support their recommendations. For the

Atlantic Forest, most remaining habitats figure as small and

isolated forest remnants [17], which highlights the importance of

connectivity between different habitats to accommodate species

climate-forced dispersal. All this should be considered in future

conservation assessments for the region.

The best 17% of the Atlantic Forest covers different proportions

of species ranges when planning is made for different time periods,

or to accommodate climate-forced dispersal. Within the best 17%

of sites (see Fig. 5), the apparently inferior performance of the

spatial solution based on species climate-forced dispersal (line

colored in magenta) depends on the way marginal loss was

calculated: it is constrained to select cells that may include

combinations of site with both high and low conservation value,

while trying to represent most of species distribution in conserva-

tion planning. Thus, analysis based only on future geographic

distribution is apparently better in terms of species representation

– because distributions are smaller. However, investing in

conservation plans based only on future distribution models is

problematic, since there is no guarantee that species will in fact

shift their geographic range to the predicted location. Thus, we

highlight the importance of the solution shown in Fig. 4C, which

shows the climate-forced dispersal scenario. As expected, the

performance of the climate-forced dispersal solution is intermedi-

Figure 5. Performance curves of different spatial conservation
solutions under climate change. Performance of conservation plans
for amphibian species inhabiting the Atlantic Forest Hotspot, Brazil.
Line colored in magenta represents the prioritization considering
species climate-forced dispersal and model uncertainties. Blue and
yellow lines stand, respectively, for the prioritizations based on current
and future species distribution models. Colors as in Fig. 4.
doi:10.1371/journal.pone.0054323.g005
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ate between current and future solution, as it represents a

compromise between these two.

Several sources of uncertainty arise in the process of conserva-

tion planning [64,65]. Available species distribution data are

incomplete or with high-commission errors (false presence) due to

the interpolation of occurrence records [66]. Secondly, ecological

niche modeling techniques introduce uncertainties, because model

projections vary [13]. Of course, it is desirable to achieve a

compromise between low ENM uncertainty and the conservation

value of a given site [64]. In addition, other aspects of uncertainty

can also be considered when proposing the establishment of new

protected areas, such as extinction risk related to patch area [67–

68] and availability of land for immediate acquisition [69]. Here

we developed a more general conceptual model for establishing a

dynamic spatial conservation prioritization analysis (see Fig. 1) that

help planners to identify locations that are important both for the

current time and for future scenarios of climate change. This is one

of the top-priority questions in spatial conservation prioritization

[70] and opens a strategy to the establishment of dynamic

programs and conservation planning analyses that may help to

better allocate scarce resources for biodiversity conservation [71].

We hope that our approach provides insights on the establishment

of conservation priorities within sites of high biological importance

in the face climate change.
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