Logo do repositório
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Entrar
    Novo usuário? Clique aqui para cadastrar.Esqueceu sua senha?
Logo do repositório
  • Comunidades e Coleções
  • Tudo no DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Entrar
    Novo usuário? Clique aqui para cadastrar.Esqueceu sua senha?
  1. Início
  2. Pesquisar por Autor

Navegando por Autor "Aldaya Garde, Ivan Aritz"

Agora exibindo 1 - 1 de 1
Resultados por página
Opções de Ordenação
  • Nenhuma Miniatura disponível
    Item
    Supercritical water technology: an emerging treatment process for contaminated wastewaters and sludge
    (2022) Souza, Guilherme Botelho Meireles de; Pereira, Mariana Bisinotto; Mourão, Lucas Clementino; Santos, Mirian Paula dos; Oliveira, José Augusto de; Aldaya Garde, Ivan Aritz; Alonso, Christian Gonçalves; Jegatheesan, Veeriah; Cardozo Filho, Lúcio
    The destruction of toxic, persistent, refractory, and hazardous organic compounds, often present at high concentrations in both industrial and municipal wastewaters, remains a major challenge to be overcome, mainly due to the inefficiencies of conventional processes. Notwithstanding, the search for novel treatment methods has received great attention recently. Supercritical water technology has proved to be a very promising treatment method for contaminated wastewaters and sludges. Performances of supercritical water technology in treating wastewaters from a wide variety of industries including pulp and paper, pharmaceutical, textile, pesticides, dairy, petrochemical, explosives, and distillery were reviewed. Furthermore, the effects of main operating conditions, namely temperature, pressure, residence time on the treatment efficiency, usually reported in terms of total organic carbon and chemical oxygen demand removal were summarized. In addition, well-known technical challenges faced by supercritical water processes such as corrosion, salt deposition, clogging, elevated running costs and possible solutions to mitigate those challenges have been discussed. At last, the future scope of the supercritical water technology is expected to be driven by policies aiming at the reduction of greenhouse gas emissions, environmental protection, mitigation of climate changes and the production of commercial gases from highly efficient treatment of contaminated organic wastewaters and sludges.

DSpace software copyright © 2002-2023 LYRASIS

  • Configurações de Cookies
  • Política de Privacidade
  • Termos de Uso
  • Enviar uma Sugestão