Use este identificador para citar ou linkar para este item:
Registro completo de metadados
Campo DCValorIdioma
dc.creatorSouza, Tiago Gonçalves-
dc.creatorDiniz Filho, José Alexandre Felizola-
dc.creatorRomero, Gustavo Quevedo-
dc.identifier.citationSOUZA, Thiago Gonçalves; DINIZ FILHO, José Alexandre Felizola; ROMERO, Gustavo Quevedo. Disentangling the phylogenetic and ecological components of spider phenotypic variation. PlosOne, San Francisco, v. 9, n. 2, p. e89314, Feb. 2014.pt_BR
dc.identifier.issne- 1932-6203-
dc.description.abstractAn understanding of how the degree of phylogenetic relatedness influences the ecological similarity among species is crucial to inferring the mechanisms governing the assembly of communities. We evaluated the relative importance of spider phylogenetic relationships and ecological niche (plant morphological variables) to the variation in spider body size and shape by comparing spiders at different scales: (i) between bromeliads and dicot plants (i.e., habitat scale) and (ii) among bromeliads with distinct architectural features (i.e., microhabitat scale). We partitioned the interspecific variation in body size and shape into phylogenetic (that express trait values as expected by phylogenetic relationships among species) and ecological components (that express trait values independent of phylogenetic relationships). At the habitat scale, bromeliad spiders were larger and flatter than spiders associated with the surrounding dicots. At this scale, plant morphology sorted out close related spiders. Our results showed that spider flatness is phylogenetically clustered at the habitat scale, whereas it is phylogenetically overdispersed at the microhabitat scale, although phylogenic signal is present in both scales. Taken together, these results suggest that whereas at the habitat scale selective colonization affect spider body size and shape, at fine scales both selective colonization and adaptive evolution determine spider body shape. By partitioning the phylogenetic and ecological components of phenotypic variation, we were able to disentangle the evolutionary history of distinct spider traits and show that plant architecture plays a role in the evolution of spider body size and shape. We also discussed the relevance in considering multiple scales when studying phylogenetic community structure.pt_BR
dc.publisherPublic Library of Sciencept_BR
dc.rightsAcesso Abertopt_BR
dc.subjectBody sizept_BR
dc.subjectCorrelation philogeneticpt_BR
dc.titleDisentangling the phylogenetic and ecological components of spider phenotypic variationpt_BR
dc.publisher.countryEstados unidospt_BR
dc.publisher.departmentInstituto de Ciências Biológicas - ICB (RG)pt_BR
Aparece nas coleções:ICB - Artigos publicados em periódicos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Artigo - Tiago Gonçalves Souza - 2014.pdf763,1 kBAdobe PDFThumbnail

Este item está licenciada sob uma Licença Creative Commons Creative Commons