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Introduction.

The purpose of this paper is to show how a Ribaucour transformation provides
families of Dupin hypersurfaces from a given such submanifold. Ribaucour
transformations for hypersurfaces were classically studied by Bianchi [Bi]. They
can be used to provide families of surfaces of constant Gaussian curvature from
a given such surface. Similarly, by using Ribaucour transformations one may
obtain minimal surfaces from a given such surface [Bi]. In this paper, we provide
necessary and sufficient conditions for a Ribaucour transformation to associate
a Dupin hypersurface into another such submanifold and we apply the theory
to special Dupin submanifolds.

Dupin surfaces were first studied by Dupin in 1822 and more recently by
many authors [CC],[CeR1],[CeR2],[Ch],[CJ],[M], [N],[P1-P3],[PT],[S],[T] which
studied several aspects of Dupin hypersurfaces. The class of Dupin hypersur-
faces is invariant under conformal transformations. Moreover, the Dupin prop-
erty is invariant under Lie transformations [P2]. Therefore, the classification
of Dupin hypersurfaces is considered up to these transformations. The local
classification of Dupin surfaces in R* is well known. However, the classification
of Dupin hypersurfaces for higher dimensions is far from complete. Therefore,
it is important to study methods which generate such submanifolds.

In section 1, we fix our notation and we recall the main definitions. In section
2, we revise a characterization of a Ribaucour transformation for hypersurfaces
of the Euclidean space in terms of differential equations. Then we provide
a necessary and sufficient condition for such a transformation to transform a
Dupin hypersurface into another such submanifold. In section 3, we apply the
Ribaucour transformation to particular Dupin hypersurfaces generating families
of Dupin hypersurfaces.

*Partially supported by CNPq and FAPDF



1. Preliminaries

A sphere congruence is an n-parameter family of spheres whose centers lie on
an n-dimensional manifold My contained in R"*!. Locally, we may consider M,
parametrized by Xo: U C R* — R™*'. For each point u = (uy,...,u,) € U, we
consider a sphere centered at X (u) with radius r(u), where r is a differentiable
real function. An involule of a sphere congruence is an n-dimensional subman-
ifold M of R™*! such that each point of M is tangent to a sphere of the sphere
congruence. Two hypersurfaces M and M are said to be associated by a sphere
congruence if there is a difeomorphism ¢ : M — M such that at corresponding
points p and ¥ (p) the manifolds are tangent to the same sphere of the sphere
congruence. It follows that the normal lines at corresponding points intersect at
an equidistant point on the center manifold. An important special case occurs
when v preserves lines of curvature.

Let M™ and M™ be orientable hypersurfaces of R**!'. We denote by N and
N their Gauss map. We say that M and M are associaled by a Ribaucour
transformation, if and only if, there exists a differentiable function /& defined on

M and a diffeomorphism t : M — M such that

a) p+h(p)N(p) = &(p) + h(p)N(¢(p)), for all p € M.
b) The subset p + h(p)N(p) p € M is an n-dimensional submanifold.

c) © preserves lines of curvature.

We say that M and M are locally associated by a Ribaucour transformation if
for all p € M there exists a neighborhood of p in M which is associated by
a Ribaucour transformation to an open subset of M. Similarly, one may con-
sider the notion of parametrized hypersurfaces locally associated by a Ribaucour
transformation.

A hypersurface M™ C R"*' is a Dupin submanifold if its principal curva-
tures are constant along the corresponding lines of curvature. Whenever the
principal curvatures are constant M is a called an isoparametric submanifold.

Consider a hypersurface M™ of R"*!. Let e; 1 < i < n be a an orthonormal
frame tangent to M and N a unit normal vector field locally defined. We denote
by w; the one forms dual to the vector fields e; and by w;;, 1 < 1,57 < n the
connection forms determined by

dwi = ij A Wis, Wij + Wi = 0.
J#
The normal connection w;,11 =< de;, N > satisfies >°; w; A wipe1 = 0. Hence,

Wing1 = 2 bijw; where b;; = bj;. The Gauss equation is given by

dw;; = Zwik AN Wi + Wing1 A Wiyt (1)
k



and the Codazzi equations are

dwint1 = Zwij NWing1-
J

Whenever the hypersurface is parametrized by orthogonal lines of curvature,
X(u1,...,uy), the first fundamental form is of the form I = ¥;w?, where w; =
a;du; and a; are differentiable functions. The principal directions are the vector

fields e; = X ;/a;, where X ; denotes partial derivative with respect to u;. Then
wij = — (—a;,w; + a;jw;) (2)

and the Christoffel symbols are given by

R Y S U,

I I —
iy T ’ [ 2
a; a]‘

It =0 fori,j,k distinct. (3)
Since the coordinate curves are lines of curvature we have
dN(e;) = MNe;, Wing1 = —Awi. (4)
Then the Codazzi equations reduce to
dXN'(ej) = (N = Mwij(ei),  i#7. (5)

Moreover, it follows from the Gauss equation (1), applied to the pair of vector
fields e;, e,, that

a i is s.i IR .. . .
(a i ) _ Yis (a_vf _ ﬂ) for ¢, 7, s distinct. (6)

Jus \ a;a; a; \asa; a;a;
Whenever the submanifold is a Dupin hypersurface we have
d)\i(ei) =0, 1< <n.

In the following section, by using Ribaucour transformations, we will show
how to obtain Dupin hypersurfaces from a given one.

2. Ribaucour transformations

In this section, we start with a local characterization of a Ribaucour transfor-
mation for hypersurfaces of the Euclidean space. This is a classical result (see
[Bi]), whenever the hypersurfaces are parametrized by lines of curvature. We
then provide a necessary and sufficient condition for such a transformation to
associate a Dupin hypersurface to a given one.



Theorem 2.1 Lel M™ be an orientable submanifold of R™'. Assume ¢;, 1 <
i < n are orthogonal principal directions, X' the corresponding principal curva-
tures and N is a unil vector field normal to M. A submanifold M™ is locally
associated to M by a Ribaucour transformation, if and only if, V.p € M, there
exist a parametrization X : U C R* — M of a neighborhood of p and a differ-
entiable function h : U — R such that

X =X+h(N-N) (7)

is a parametrization of M and the unil vector field N normal to M is given by

N = ﬁ (2: 27%e; 4+ (A — 1)N) (8)
where " i
7= AR g
and h satisfies the differential equations
dZ7 (&) + Z'wii(e)) — Z' 2N =0, 1<i#j<n. (10)

Proof: In order to prove the theorem, we will consider N to be a unit vector

field given by
N =Y be; +b"*'N, (11)
=1

where
n

DB+ () =1 (12)

=1

We introduce the following notation

dN(e;) =3 Lrer + LIT'N, (13)
k

where for 1 <.k <n
LE = db*(e;) + bwin(e:) + (O bwjier) + 6" N) b,
L = db™ () — BN ]

We will later show that the following relations hold

b = Zi(1 — b, b+t = i%. (14)



In this case, it follows from (9) that

2 i ;
Lf = 1—|—7A (de(eZ) + VA wik(ei) + ZJ: Z]wji(ei)(sik)
dA(e; A—-1_.
Y A (e:) Ak, (15)

(A +1)2 + A+1
2dA(e;) 27N\
(A+1)2 A+4+1

Lyt (16)

We will now prove the theorem. Assume that M is locally associated to M by
a Ribaucour transformation. Then by definition there exist local parametriza-

tions X of M, X of M and a function % defined on U C R" such that
X+hN=X4+hN,

where N is a unit vector field normal to M, which may be considered as in (11).

Then

< dX(e), N >=0, forall 7, 1 <1< n. (17)

Since

dX = dX 4+ dh(N — N) + h(dN — dN) (18)
it follows from the relations dX = 3. wje; and dN(e;) = Me; that

dX(e;) = (14 hX\)e; + dh(e;)(N — N) — hdN(e;). (19)
Hence, equation (17) implies
(1 +RX) + dh(e)(B" —1) =0, 1<i<n. (20)

We claim that the fact that X is a Ribaucour transformation of X implies
that 1 + AX # 0 for all . In fact, consider the center manifold X0= X 4+ AN.
Then

Assume that (1 + h/\i)(uo) = 0 at a point u®. Then it follows from (20) that
dh(e;) ("' —1)(u®) = 0 and hence dh(e;)(u®) = 0. Otherwise, bt (u°) = 1 im-
plies that )N((uo) = X(u") = X°u"). Hence h(u°) = 0, which is a contradiction,
since (14+AX)(u®) = 0. Therefore, we have dh(e;)(u®) = 0 and dX°(e;)(u®) = 0,
which contradicts the fact that the center manifold X° is n-dimensional.

So 1 4+ AX # 0 for all 7, therefore we conclude from (20) that the relations
(14) hold, where the second equality of (14) follows from the first one, from
(12), the notation (9) and the fact that we want b"t! £ 1 (i.e. X # X).



We will show that the differential equation which is satisfied by A, is a
consequence of the property

<dN( )dX(e]) >=0, for ¢ # 7.
Since X preserves lines of curvature, we have
< dX(e;),dX(e;) >=< dN(e;),dX (e;) >=< dN(e;),dN(e;) >=0 fori # j.

Hence, using the notation (13) and equation (19), we get

<dN(e),dX(e;) > = < dN(e),(1+hX)e; + dh(e;)N >,
= LI(14hXN)+ LM dh(ej) =0,  fori# .
By using the relations (15) and (16) in the last equality, we conclude that
equation (10) holds.

Conversely, assume h is a solution of (10), then we define the functions Z°

and A by (9), b and 6"*! by (14). It follows from (15), (16) and (10) that
LE4 7R =0, i #k. (21)

Moreover, from (15) we have for all 7,1 < < n,

9 dA(e;) A
L= dZ'(e ZFwi(e) — 27" A-1DZ). 22
L AT RO R o BRI P C

Therefore, using the definition of A, (10) and (16), it follows from a straight-
forward computation that

7L+ ((ZZ’)2 - %) L+ =, (23)

We consider N and X as in (11) and (7) respectively. We need to show that
X is associated to X by a Ribaucour transformation. We first observe that N
is a unit vector field. In fact,

ST + (B = (1= bHEA 4 () = 1,

where the last equality follows by using the expression of 4"*!.

We next verify that N is normal to X. From the definition of X, we have
that dX (e;) is given by (19). Hence, using the fact that |N| = 1, we conclude
that

<dX(e:),N> = (1+hXN)bi + dh(e)(b" " —1)
= (=(1+hN)Z' + dh(e)) (™ = 1) = 0.
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In order to show that the principal directions are preserved, we first show
that

< dN(e;),dN(e;) >=0 i #j.
This follows from

< dN(e;),dN(e;) >
= LiLi+ LI+ >0 LiLf+ Lo

k#ik#]
= 7L = 2L N (ZFP Lt 4 et
k#i,k#]
= ((Zi)2 +(Z)P —(A+1)+ Y (7 + 1) Ly L =0,
k#i,k#]

where in the two last equalities we have used (23) and the definition of A. Now,
using the above equality and equations (18) and (21), we conclude that for ¢ # j

< dN(e;),dX(e;) >
=< dN(e;), (1 +hM)(e;) + dh(e;)N >
= LI(1 + hN) 4+ L dh(e;) = 0.

Finally, we conclude that the images of the vector fields e;,e; by dX are
orthogonal for all ¢ # j. In fact,

< dX(e;),dX(e;) >= (1 + h\') < e;,dX (e;) > +dh(e;) < N,dX (e;) >
= —(1+hX')(dh(e;)b' + hL}) + dh(e:) (dh(e;)(1 — b™+') — ALIF') =0,

where the last equality follows from the definition of b and equation (21).
Moreover, generically X is an n-dimensional manifold, since
X (e)* = 3 ((1+ hX)Si — dh(e)b — hLE) +(dh(e)(1 — b — hLI+) .
k
(24)
O

We observe that, whenever the manifold M is parametrized by orthogonal
lines of curvature X (uy, ..., u,), equation (10) in classical notation is written as

L+ RN L4+ hN Y X .
ji————Ih, — ———T"h, — : | hih; =0, ’
YU RN T TR (1—|—h/\1+1—|-h)\2) ihj =007

where h; and h;; denote the partial derivative of i with respect to u; and to
u; u; respectively. This equation is easily obtained by substituting in (10) the
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expression of Z7 given by (9), equations (2), (3) and using Codazzi equation

(5).
Our next result will show how to linearize the problem of obtaining the
function h.

Proposition 2.2. Suppose that h is a nonvanishing function which satisfies
equation (10) then

1 & i
@/):E;Zwi

is a closed 1-form and there exists a nonvanishing function 0 defined on a
simply connected domain such that

0
dQe)) = 2"

Proof: By considering the exterior differentiation of ¢, we get

dh(e;)
h

— ijij(ej) wj A w;.

dy = Z dz'(e;) — Z'
2#]

As a consequence of (10) we conclude that the coefficients of w; A w; for j <1
vanish. Hence, on any simply connected domain, there exists a differentiable
function ) such that

d(log Q) = ¢.
Therefore, dQ(e;)/Q = (e;), which concludes the proof. O

Based on the previous result, for each nonvanishing function A, which is a
solution of (10), we consider £ as given by Proposition 2.2 and we define

Q0

Q' =dQe;), W= - (25)
With this notation, (10) is given by
d'(ej) = Quwile;), fori#j, (26)
aQ = > Qu;, (27)
AW = =3 Q'Nw; (28)
and
h=Q/W. (29)
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Hence, we have the following

Proposition 2.3 A nonvanishing function h is a solution of (10) defined on
a simply connected doamin, if and only if, h = Q/W where Q and W are
nonvanishing functions which satisfy (26)-(28).

With the above notation , it follows that

dh(e;) = %(1 + QX /W) and L+ AN =14+QX/W.  (30)
Hence, _
N 0% 1 :
7' = — A=Y ()2 1
= 77 () (31)

Therefore, Theorem 2.1 can be rewritten as follows

Theorem 2.4. Let M™ be a hypersurface of R™' paramelrized by X : U C
R* — M. Assume e;, 1 < i < n are the principal directions, \* the corre-
sponding principal curvatures and N is a unil vector field normal to M. A
submanifold M" is locally associated to M, by a Ribaucour transformation, if
and only if, there exist differentiable functions W,Q, Q' : V. C U — R, which
satisfy (26)-(28) and X :V C R* — M, is a parametrization of M given by

5 2Q

X:X—W(;Qiei—WN). (32)

Remark 2.5. We observe that d)' = Y>7_, dQ'(eg)wy. Therefore, (26) is
equivalent to _ ‘
dQ)’ A Ww; — Zﬂjwij(ej)wj A Ww; = 0. (33)
J#i

In classical notation, whenever M is parametrized by lines of curvature
X(uty ..., up), the system of equations (26), (27), (28) is written as

o0 -1 Oa;

= W——2 4y 4
au] CLZ' au27 [ % ]7 (3 )
o0 :

- @
o, a (35)
d 7\
aul [i = —q VN, (36)



where the functions a; correspond to the metric of the manifold M, i.e. ds? =
Siaidu?. Tt is a straightforward computation to see that the compatibility
condition of equation (34) is given by (6).

The following result shows that for each solution Q', 1 < i < n, of (26),
there exists a 2-parameter family of solutions of the system (27), (28).

Proposition 2.6. Fquation (26) is the integrability condition of the system of
equations (27), (28) for Q and W.

Proof: Consider the ideal Z generated by the 1-forms
a = d2—> Quw,

B o= dW +> ONw,.

We will show that if (26) holds then T is closed under exterior differentiation.
In fact,

da = —Zdﬂi/\wi—Zin]‘/\wﬁ
i i#i
= —Zdﬂi/\wi—zﬂj/\wﬁ(ej)wj/\wi:0
i i#i

where the last equality follows from Remark 2.5.
Similarly,

dB = Y dUN Awi+ Y VAN Awi + YU Nw; Aw;;
i i i
= ZdQZAZ A Wy + Z Qid/\i(ej)wj A Wy + Z Qi)\iwﬁ(ei)wj A w;.
i i i

Using Codazzi equation (5) we conclude that

dﬁ = Z )\Z(dﬂZ A Ww; — ;ijij(ej)wj A wi) = 0,
7 JF2

as a consequence of equation (33).
O
From now on, whenever we say that two hypersurfaces are locally associated
by a Ribaucour transformation we are assuming that there are functions where
Q') Q and W locally defined, satisfying the system (26)-(28). Moreover, we ob-
serve that since the normal lines at corresponding points intersect at a distance

h = Q/W, it follows from (30) that dh(e;) # 0 if and only if Q° # 0.

10



Theorem 2.7. Assume M is locally associated to M by a Ribaucour transfor-
mation. Let e;, 1 < i < n be the principal directions and \' the correspond-
ing principal curvatures of M. Then the principal curvalures of M for each
1 << n are given by

Vo= S adsi) O £0, (37)
v WT XS i

where Q', Q and W satisfy the system (26)-(28) and

S=W?*+ Z(QJ)Q, T =203 Qfwy(e;) — WAY). (39)

Proof: Let X and X be parametrizations of M and M associated by a
Ribaucour transformation. The principal curvatures of M are given by
i < dN(e;),dX (e;) >

< dX(e),dX(e;) >

(40)

Since X is associated to X by a Ribaucour transformation, we have
dX = dX 4 dh(N — N) + h(dN — dN),

where h = /W and N is given by (8) Now, d]\Nf(ei) = S\idj((ei) therefore, from

the last equation we get
(1 4+ hA)dX (e;) = (1 + hX\)e; + dh(e)(N — N). (41)
Hence, using (11), we obtain

(1+ hX)? < dX (e

i), dX (ei) >
= (1+ hA)? + 2(dh(e;))?

N2 = 2dh(e)[(1 + hX)b' + dh(e;)b™].
It follows from (14) and (9) that
(14 hX)? < dX(e;),dX (e;) >= (1 + hA)2 (42)

On the other hand, using (13) and (41), we have

1 o
< dN(e;),dX (e;) >= — |(1 + RX)L: + dh(e;) LI 43
(e dX (e) >= = (L4 BA) L dh(en L] (43)

11



Assume Q' #£ 0 i.e. dh(e;) # 0, then it follows from (23) that

: : A+1
Ltz = 228
YA
hence '
(1 + hAZ)(A~+ 1)[]7}-}-1‘
27i(1 4+ hX)

We conclude, using (40) and (42), that X is given by

< dN(e;),dX (&) >=

. (A + 1)Lt

k3

~ 2dh(e;) — h(A + 1) L7

if Q' #0, (44)
where L?*! is defined by (16).
Observe that A 4+ 1 = S/W?, where S is defined by (39). Therefore

2 —2 .
S W

(A+ 1)L =

Hence, it follows from (27), (28) and from the fact that A = Q/W that N is
given by (37).

If O =0, i.e. dh(e;) =0, then Z° = 0 and hence, it follows from (10)
that dZ’(e;) = 0 for all j # i. Therefore, we get from (9) that dA(e;) = 0.
Using equations (15) and (16) we conclude that L't = L¥ = 0 for all k # 1.
Moreover, Lt is given by (46). Now it follows from (24) that

|dX (e;)|? = (14 hX — hLH)2.
Since dN(ei) = Lie;, we get
< dX(e),dN(e;) >= (1 + hX\; — hL}) L.

Therefore, from (40) we obtain that

L; i —
where
L = Axl (22}; ZFopi(e) + (A — 1)/\") when ' = 0. (46)

Using (9) we have that A +1 = S/W? A —1=(5—2W?)/W? and

L= %Hj

12



where T" is defined by (39) Moreover,

S — QT
—
Therefore, we conclude from (45) that (38) holds.

1+ hXN — hLi =

O

Theorem 2.8 Let M™ be a Dupin submanifold of R"*' whose principal curva-
tures and corresponding principal directions are given by X' and e;, 1 <1i < n,
respectively. Let M be a hypersurface of R™* locally associated to M by a Rib-
aucour transformation. Then M is a Dupin submanifold, if and only if, the
functions O, Q and W satisfies the following additional condition for each i
1<:<n,

i) d (dséfi)) (€;) = 0, whenever Q° # 0;

T .
i) d (g) (e;) =0, whenever ' =0,

where S and T" are given by (39).

Proof:  Assume that Q° # 0, i.e. h depends on w;. Since M is a Dupin
submanifold, it follows from (37) that d\*(e;) = 0, if and only if,

dS(e)W + QXS B
4 ( 05 — QdS(e;) ) (e:) = 0.

Using (27) and (28), this equation is equivalent to
S(W + QN') (Q'd(dS(e:)(e:) — dS(e:)d (e:)) = 0.

Since S(W + Q/\i) # 0, we conclude that i) must be satisfied.

If h is independent of the variable u;, i.e. Q; = 0, then it follows from (26),
(27) and (28) that dQ(e;) = dW (e;) = 0 and dQ*(e;) = 0 for all k # i. Moreover,
we have seen in Theorem 2.7 that A is given by (38). Hence, d;\i(ei) =0 if and
only if,

(W + QX) (SdT(e;) — T'dS(e;)) = 0.

Therefore, we conclude that ii) holds.

13



3. Applications

In this section we will generate families of Dupin hypersurfaces by applying
Theorem 2.8 to a hyperplane, a torus, S x B*~! and 5% x R"~%. These examples
will show that the transformation we are using to generate Dupin hypersurfaces
is not a Lie transformation.

Proposition 3.1 Consider the hyperplane in the Euclidean space R™1 | parametrized
by X(up,...,ty) = (U1, ..y Uy, 0). X is a parametrized Dupin hypersurface locally
associated to X by a Ribaucour transformation, if and only if,
. 20027, i)
X=X == g —e), 47
E](f]/)g_l_cz(fl f2 n ) ( )
where
fi = eul + ciui + cio (48)
and ¢ # 0, ¢, ¢i1, Cio, € R .

Proof. Since the principal curvatures of X are A\* = 0 and the metric g;; =
a;0;; = 1, for 1 <1, 5 < n, it follows from equations (34)-(36) that

Q=>f, W =c#0, h=Q/e, and Q' = f/,
=1

where f;(u;) are differentiable functions. For any such functions, the subma-
nifold X given by (32) is a Ribaucour transformation of the hyperplane. In order
to obtain Dupin submanifolds associated to M, we consider the expressions

S:cQ—I—z:(fi')2 and T'=0

defined by (39).

It follows from Theorem 2.7, that for each 7z, 1 < ¢ < n, such that f; is
constant, we get Xi = 0. For each 7 such that f; is not constant, it follows from
Theorem 2.8, that X is a Dupin submanifold, if and only if,

d (digfi)) (e:) = 0.

Since dS(e;)/¥ = 2f!, we conclude that the condition above is equivalent to

requiring that (48) is satisfied. )
If ¢;o = 0, and ¢;; # 0, then from (37) we get A = 0. If ¢;; # 0, then

Y 4ee;o

AZ 7
(Zj;&i(f]/‘)Q — A i fi + Ai)

14



where the constant A; = ¢* + ¢ — 4eiacio.
Moreover, the transformed Dupin submanifold (see equation (32)) is given
by (47).
O

Remark. In Proposition 3.1, one observes that the Dupin hypersurface X
has the following properties:

a) Generically, whenever the coefficients c;; # 0 are distinct, then the curva-
tures \' have multiplicity one.

b) If ¢; = 0 for k& distinct indices 7, then X has a zero principal curvature of
multiplicity k. In particular, if ¢;; = 0 for all 7, then X is an open subset
of a hyperplane.

c) If ¢;; = B # 0 for all 4, then all \i are equal to a non zero constant. Hence,
X is an open subset of a sphere.

d) If for k& distinct indices we have ¢;,2 = ¢;,0 = ... = Ciy2 jé 0, then we get
a principal curvature of multiplicity k&, namely X', ..., A\ are equal to a
function which is independent of w;, ..., u;,.

Proposition 3.2. Consider the torus in R®, parametrized by
X(uy,uz) = ((a + rcosuz) cos uy, (a + rcos ug) sin uy, rsin uy).

X is a parametrized Dupin surface locally associated to X by a Ribaucour trans-
formation, if and only if, X is given by (32) where

ol =11, O = f} — fisinuy
Q= (a+rcosug)fi+rfa+A, W = —ficosuy — fo+ B
fi = a; cosu; + bysinu; + ¢ 1=1,2, (49)
where a;, b;, ¢;, A and B are real constants such that if Q* = 0 then Q! = 0.

Proof. The principal curvatures of the torus are

COS Uy 1
M= — = M=
a + 7 Ccos ugy r
The coefficients of the metric are given by
a1 = a + 7 cos uy ay =T.

15



It follows from equations (34)-(36) that
O = filw), Q= —fisinug + f3(uz)
where f; and f; are differentiable functions of u; and u; respectively. Moreover,
Q=(a+rcosuz)fi+rfat+ A W = —cosuyfy — f2 + B,

where A and B are constants.
In order to use Theorem 2.8, we consider the functions S and 7" defined by

(39). Then

2 2

S = fo + Z(fi’)Q — 2f1(fysinug — facosuy) — 2B(fi cosug + f2) + B>

and
T =2(=Q%sinu® — W) T? = —2W A2,

If Q° # 0 i = 1,2, then requiring dS(e;)/Q" to be independent of w; is
equivalent to having f; satisfying (49).

If @' =0 then fi(u1) = e1, 2%, W and S do not depend on u;. Therefore,
the condition ii) of Theorem 2.8 for 7 = 1 is trivially satisfied.
If we consider % = 0 then we necessarily have f; = ¢; and f; = —¢; cosuy + ¢,
where ¢; and ¢; # B are real constants. In this case, the associated surface is
parallel to the torus and its principal curvatures are

< A\

BT

where h = (ac; +res + A) /(B — ¢2).
|

Proposition 3.3 We consider the submanifold M™ = S' x R in the Fu-
clidean space R"™', parametrized by

XUty ooy tiy) = (COS UL, SIN UL, Uy ooy Up).

Then X is a paramelrized Dupin hypersurface locally associated to X by a Rib-
aucour transformation, if and only if,

2 Z?:l fj

)N( =X - Z(fl>2 + (C_f1)2 (((C_fl)Sinul)/7((c_fl)cosul)/afévfév-“afyi)
i\Jj
(50)
where
fi = ajcosuy + bysinuy + ¢+ e,
fi = coul + caui + cio if 1 > 2. (51)
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Proof. The principal curvatures and the metric for the manifold M are A\; =
1,AX =0,7>2and a; = 1, for 1 < j < n. Hence, it follows from equations
(34)-(36) that
Qj:f]’-, Q:Efj, W=—-fi+c and h=Q/(—fi+¢)
j=1
where f;(u;) are differentiable functions of u;. )
For any such functions the parametrized submanifold X defined by (32) is a

Ribaucour transformation of the cylinder. In order X to be a Dupin submanifold
we consider the expressions defined by (39)

S = (—f1-|-0)2—|-

J

()

1

T

and
10 if72>2.

We will first assume that Q° # 0, i.e. f; is a non constant function of wu;,

then
dS(e;) 2 o)+ 2f7 ife=1,
Q] 2f if s> 2.

Hence, condition i) of Theorem 2.8 is satisfied if and only if f; and f; are given
by (51). Moreover, the associated principal curvature is given by

WS iy
o S — 2Q61 o
A=
dei W e -
_—. fz>2.
S — 4962'2 =

If Q' =0 for some i, i.e. fi = ¢; is a constant, ¢; # ¢ if i = 1. Then the

condition ii) in Theorem 2.8 is trivially verified and

) { —(c— )+ D))

i ifi =1,
A= (c_cl)(c+cl+22j22fj)+2j22(f]{)2
0 if ¢ > 2.

We conclude that in both cases the functions fi,..., f, are given by (51).
From (32) we get the associated Dupin submanifold which is given by (50).
O

Remark. In Proposition 3.3, the Dupin hypersurface X has the following
properties:
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a) If all the functions f; are constant, then X is a hypersurface parallel to

St x Rt

b) If fi = ¢4 # ¢ and for all j > 2, f; is a linear function given by f; =
¢jo + (¢ — er)uj/v/n — 1, then X is an open subset of a hyperplane since
all its principal curvatures vanish.

c) If for k indices 2 < iy,...,1; < n , the functions f;, are linear in u;,, then X
has a zero principal curvature of multiplicity &.

d) If for k distinct indices we have ¢; )3 = ¢iy2 = ... = ¢;,2 # 0, thenN we get a
nonzero principal curvature of multiplicity &, corresponding to A\t = ... =

XS

e) In the generic case all principal curvatures have multiplicity one.

Proposition 3.4 Consider the submanifold M™ = S* x R"™%, paramelrized by
X (U, eeeythyy) = (Sinuy COS Uz, SIN Uq SIN Uz, COS U, Uz, .evy Us,).

Then )N(Nis a parametrized Dupin hypersurface locally associated to X, if and
only if, X is given by (32) where

Q' =cosui fo + f1, QO =f fori>2, (52)
QZSiHUlfQ‘l‘Zsz W = —(sinuy fa + f1), (53)
i#2
and
fi = a;cosu; +b;sinu; +¢; 1 <1<2, (54)

/i

cﬂu? +chuj+co 3<7<n. (55)

Proof. The principal curvatures of M are \! = A2 =1 and X = 0for 3 <i < n.
The first fundamental form of M is given by ds* =3, a?du? where, a; = sin u;
and a; = 1 for ¢ # 2. It follows from (34), (35) and (36) that @/, 1 < j < n, Q
and W are given by (52) and (53), where f;(u;) are differentiable functions.

In order to get the are Dupin submanifolds X locally associated to X by a
Ribaucour transformation, we consider the following expressions:

n

S= [+ f3+2f(fisinug + f]cosuy) + > _(f})°

J=1

18



—2W ifi=1
T' =< —2W 4+ 2cosu; Q' ifi=2
0 ife>3
We will first consider the cases in which all functions ) are non zero. Since
Q' # 0, we conclude from Theorem 2.8 that the functions f; are given by (54)
and (55).
Now we assume that a function ' vanishes identically. If Q' = 0 for some
i >3, then T =0, and X = 0.
Assume Q! = 0, then this is equivalent to f; = ¢; and f; = —cysinu; + ¢4,
where ¢; # 0. In this case, we necessarily have 1> = 0. Hence, condition ii) of
Theorem 2.8 must be satisfied for = 1,2. Since the expression of S reduces to

S=cE+3 (/)
i>3

and T' = T? = 2¢;, the condition is trivially verified. Moreover,

—ci + s f)?

B = .
—ct + ijg(f;)Q —2¢ ijs /i

In the previous case, we have seen that Q' = 0 implies that Q% = 0. However,
we may have Q2 = 0 without necessarily having Q' = 0. In this case we have
fa = co and f] # —cycosuy. From the fact that 7% and S are independent of
g, it follows that condition ii) of Theorem 2.8 is trivially satisfied.

O

Remark. The family of Dupin hypersurfaces X of Proposition 3.4 have the
following properties:

a) For generic choices of the constants involved in the functions (54) and (55),
we get ' to be independent of u; and of multiplicity one.

b) If a; = ay =by =0,b; = —¢cy and ¢; # 0 ( i.e. QIN: QQN = 0), then X
has a principal curvature of multiplicity 2, namely A! = A\? is a function
independent of u; and ws,.

c) If ¢;o = 0 for some j > 3, then M = 0.

d) Under the same conditions as in b), if in addition we require ¢; = 0 for
all ;7 > 3 and the constants c¢;; to satisfy 3,55 c?l — ¢} =0, then X is an
open subset of a hyperplane.

e) If for k£ distinct indices ji,...Jx > 3 we have ¢;2 = ... = ¢j,2 then X has a
principal curvature of multiplicity &, namely M = ... = M* is a function
independent of wu;,, ..., u;,.
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£) If ¢; = 0 and ¢, + by # 0 then X' =1 and \? # 1.
g) If¢; =0, ¢+ by =0 and a2 4+ b2 # 0 then X' = )2 = 1.

h) Under the conditions of g), if in addition we require ¢j; = 0 for all j > 3,
¢ #0and a? — 2 + a3 + b + > i>3 c?l = 0 then the principal curvatures

for X are \' = A2 =1, and M =0 for j > 3.

i) Under the conditions of g) if in addition we require ¢;; = C # 0 for all
j >3, and a? + ai + b3 + 2 >3 c?l —4C 355 ¢jo = 0 then X is an open
subset of a unit sphere.

We observe that a Ribaucour transformation, which transforms a Dupin sub-
manifold into another Dupin submanifold, is not a Lie transformation [| and it
does not necessarily preserve the property of being a proper Dupin submanifold.
A Dupin hypersurface whose principal curvatures have constant multiplicity is
called a proper Dupin submanifold. 1t is easy to see that in Proposition 3.4 we
can choose X to be a non proper Dupin submanifold associated to 52 x R™~2
by a Ribaucour transformation. In fact, by choosing ¢33 = 0 and ¢;5 # 0Vj > 4,
in equation (55), we get generically X of order one except on the submanifold

Zj24(f]/')2 = ¢ — 3, where \! = \? = A3 =0.

Transformations for Dupin submanifolds with higher codimension will be
treated in another paper.
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