
 
 

 

 

UNIVERSIDADE FEDERAL DE GOIÁS (UFG) 

ESCOLA DE ENGENHARIA ELÉTRICA, MECÂNICA E DE COMPUTAÇÃO (EMC) 

 PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E DE 

COMPUTAÇÃO 

 

 

 

GUILHERME FERNANDES DOS SANTOS  

 

 

 

 
Algoritmos de Inteligência Computacional 

Aplicados à Otimização de Sistemas de Controle 

em Acionamentos Elétricos 

 
 
 
 
 
 

GOIÂNIA 

2023 

 



4/10/23, 4:16 PM SEI/UFG - 3652761 - Termo de Ciência e de Autorização (TECA)

https://sei.ufg.br/sei/controlador_externo.php?acao=usuario_externo_documento_assinar&id_acesso_externo=352711&id_documento=3958621… 1/2

UNIVERSIDADE FEDERAL DE GOIÁS
ESCOLA DE ENGENHARIA ELÉTRICA, MECÂNICA E DE COMPUTAÇÃO

TERMO DE CIÊNCIA E DE AUTORIZAÇÃO (TECA) PARA DISPONIBILIZAR VERSÕES ELETRÔNICAS DE
TESES

E DISSERTAÇÕES NA BIBLIOTECA DIGITAL DA UFG

Na qualidade de titular dos direitos de autor, autorizo a Universidade Federal de Goiás
(UFG) a disponibilizar, gratuitamente, por meio da Biblioteca Digital de Teses e Dissertações (BDTD/UFG),
regulamentada pela Resolução CEPEC nº 832/2007, sem ressarcimento dos direitos autorais, de acordo
com a Lei 9.610/98, o documento conforme permissões assinaladas abaixo, para fins de leitura,
impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data.

O conteúdo das Teses e Dissertações disponibilizado na BDTD/UFG é de responsabilidade
exclusiva do autor. Ao encaminhar o produto final, o autor(a) e o(a) orientador(a) firmam o compromisso
de que o trabalho não contém nenhuma violação de quaisquer direitos autorais ou outro direito de
terceiros.

1. Identificação do material bibliográfico

[ X ] Dissertação         [  ] Tese          [  ] Outro*:_____________

 

 
*No caso de mestrado/doutorado profissional, indique o formato do Trabalho de Conclusão de Curso, permitido no documento de área, correspondente ao
programa de pós-graduação, orientado pela legislação vigente da CAPES.
 
Exemplos: Estudo de caso ou Revisão sistemática ou outros formatos.

2. Nome completo do autor

Guilherme Fernandes dos Santos

3. Título do trabalho

“Algoritmos de Inteligência Computacional Aplicados à Otimização de Sistemas de Controle em
Acionamentos Elétricos”

4. Informações de acesso ao documento (este campo deve ser preenchido pelo orientador)

Concorda com a liberação total do documento [ X ] SIM           [     ] NÃO¹

[1] Neste caso o documento será embargado por até um ano a partir da data de defesa. Após esse período,
a possível disponibilização ocorrerá apenas mediante:
a) consulta ao(à) autor(a) e ao(à) orientador(a);
b) novo Termo de Ciência e de Autorização (TECA) assinado e inserido no arquivo da tese ou dissertação.
O documento não será disponibilizado durante o período de embargo.
Casos de embargo:
- Solicitação de registro de patente;
- Submissão de artigo em revista científica;
- Publicação como capítulo de livro;
- Publicação da dissertação/tese em livro.

Obs. Este termo deverá ser assinado no SEI pelo orientador e pelo autor.



4/10/23, 4:16 PM SEI/UFG - 3652761 - Termo de Ciência e de Autorização (TECA)

https://sei.ufg.br/sei/controlador_externo.php?acao=usuario_externo_documento_assinar&id_acesso_externo=352711&id_documento=3958621… 2/2

Documento assinado eletronicamente por Guilherme Fernandes Dos Santos, Usuário Externo, em
06/04/2023, às 10:53, conforme horário oficial de Brasília, com fundamento no § 3º do art. 4º do
Decreto nº 10.543, de 13 de novembro de 2020.

Documento assinado eletronicamente por Gelson Da Cruz Junior, Professor do Magistério Superior,
em 10/04/2023, às 15:59, conforme horário oficial de Brasília, com fundamento no § 3º do art. 4º do
Decreto nº 10.543, de 13 de novembro de 2020.

A autenticidade deste documento pode ser conferida no site
https://sei.ufg.br/sei/controlador_externo.php?
acao=documento_conferir&id_orgao_acesso_externo=0, informando o código verificador 3652761 e
o código CRC 7F0C388A.

Referência: Processo nº 23070.009585/2023-08 SEI nº 3652761



Guilherme Fernandes dos Santos

Algoritmos de Inteligência Computacional Aplicados à
Otimização de Sistemas de Controle em Acionamentos

Elétricos

Dissertação apresentada ao Programa de
Pós-Graduação Stricto Sensu em Engenharia
Elétrica e de Computação, da Escola de
Engenharia Elétrica, Mecânica e de Com-
putação, da Universidade Federal de Goiás
(UFG), como requisito para obtenção do
Título de Mestre em Engenharia Elétrica e
de Computação.

Área de Concentração: Engenharia de
Computação.

Orientador: Prof. Dr. Gelson da Cruz
Junior

Coorientador: Prof. Dr. Wander Gonçalves
da Silva

GOIÂNIA
2023



Ficha de identificação da obra elaborada pelo autor, através do
Programa de Geração Automática do Sistema de Bibliotecas da UFG.

CDU 621.3

Santos, Guilherme Fernandes dos 
      Algoritmos de Inteligência Computacional Aplicados à Otimização de
Sistemas de Controle em Acionamentos Elétricos [manuscrito]  /
Guilherme Fernandes dos  Santos. - 2023.
      CXXIX, 129 f. 

      Orientador: Prof. Gelson da Cruz Junior; co-orientador Wander
Gonçalves da Silva.
      Dissertação (Mestrado) - Universidade Federal de Goiás, Escola
de Engenharia Elétrica, Mecânica e de Computação (EMC), Programa
de Pós-Graduação em Engenharia Elétrica e de Computação, Goiânia,
2023.
     Bibliografia.
      Inclui siglas, abreviaturas, símbolos, gráfico, tabelas, algoritmos,
lista de figuras, lista de tabelas.

      1. Otimização. 2. Inteligência computacional . 3.  Meta-heurísticas.
4. Configuração de algoritmos. 5. Acionamentos elétricos. I. Junior,
Gelson da Cruz, orient. II. Título.







Acknowledgements

Firstly, I would like to express my heartfelt gratitude to my mother, a true example
of strength and courage. From the very beginning, she has been a fearless champion for
our family, overcoming countless obstacles that have crossed our path. I can never truly
express the depth of my appreciation for all that she has done for me, but I hope to make
her proud in all that I do. I would also like to extend my gratitude to my entire family,
with special mention to my father Valdir, my sister Giulia and my brother Henrique, who
have been unwavering companions.

To Sâmya, for all the love and understanding throughout this journey. Your patience
and encouragement were invaluable and motivated me to be a better person and to pursue
my goals with confidence. Thank you, Sam, for being the guiding constellation that leads
me to new horizons and for being the best partner I could ever ask for.

I am also extremely grateful for the wonderful friends that life has brought into my
path. Despite the challenges of distance and time, our hearts have remained close. Thank
you for your unwavering support, encouragement, comfort, and happiness. I would like to
give special thanks to André, CJ, Henrique, Isaque, João, Josephy, Lulu, Madu, Najulia,
Paulo Vitor, and Vitim.

I would like to express my deepest gratitude to Professors Gélson and Wander for
their competent supervision of my master’s work. I am grateful for the opportunity to
work with you, for your company, time, patience, and the valuable teachings I received.
Undoubtedly, you are excellent examples of researchers, professionals, and human beings
that one day I hope to become. Thank you for the inspiration and encouragement to move
forward.

Finally, I would like to thank the Coordenação de Aperfeiçoamento de Pessoal de
Nível Superior - Brasil (CAPES) for the financial support.



Power is nothing without control.
(Pirelli)



Resumo

Este trabalho apresenta o uso de diferentes métodos de inteligência compu-
tacional aplicados ao ajuste de um conjunto de controladores PI para acionamento
de um motor CC com controle de velocidade e posição. Para controle de posição,
são utilizadas três malhas de controle fechadas: corrente de armadura, velocidade e
posição. Para controle de velocidade são utilizadas somente as malhas de corrente de
armadura e velocidade. Em ambos os casos, as saídas dos controladores de corrente e
velocidade são limitadas à tensão e a corrente nominal de armadura, respectivamente.
Através disto, é possível a utilização de ganhos mais elevados para os controladores,
o que faz com que o sistema responda mais rápido. No entanto, o fenômeno de
windup pode surgir e, para evitá-lo, circuitos anti-windup também são utilizados e,
portanto, o sistema torna-se não-linear. Devido a isto, um ajuste ótimo dos controla-
dores se torna uma difícil tarefa. No intuito de explorar diferentes possibilidades,
primeiramente, os problemas de controle de velocidade e posição são formulados
de modo com que somente um objetivo seja minimizado. Dentro deste contexto de
otimização mono-objetivo, os algoritmos PSO e SA são utilizados para realizar o
ajuste dos parâmetros dos controladores e, a partir disto, é investigado a capacidade
de cada um quando comparados entre si. Formulações multiobjetivo também são
exploradas visando atender três objetivos simultaneamente. Nesta parte do trabalho,
os algoritmos evolucionários multiobjetivo NSGA-II e SPEA2 são utilizados. Todos
os algoritmos foram implementados no MATLAB e os modelos de acionamentos
elétricos foram desenvolvidos no ambiente SIMULINK. Os resultados das simulações
são apresentados mostrando que para a formulação mono-objetivo, tanto para o
problema de controle de velocidade quanto para controle de posição, o algoritmo PSO
possuiu um desempenho superior ao SA. Para a formulação multiobjetivo o algoritmo
SPEA2 apresentou melhores características com respeito ao indicador de qualidade
Spread no problema de controle de velocidade. Além disso, demonstrou superar o
NSGA-II em relação ao indicador Hypervolume no problema de controle de posição.
Foram realizadas séries de testes variando os valores dos principais parâmetros de
cada algoritmo, sendo observado que não houve vantagem estatisticamente significa-
tiva na maioria dos casos. De uma forma geral, os resultados apresentados evidenciam
a capacidade dos algoritmos de encontrar ajustes ótimos para os controladores, seja
para o problema mono-objetivo ou com objetivos múltiplos e conflitantes.

Palavras-chave: Otimização, inteligência computacional, meta-heurísticas, algorit-
mos evolucionários multiobjetivo, configuração de algoritmos, acionamentos elétricos,
controle de velocidade, controle de posição, motor CC.



Abstract

This work presents the use of different computational intelligence methods
applied to the tuning of a set of PI controllers for a DC motor drive with speed and
position control. For position control, three closed control loops are used: armature
current, speed and position. For speed control, only the armature current and speed
loops are considered. In both cases, the outputs of the PI armature current and
speed regulators are limited to the rated armature voltage and current, respectively.
Then, it is possible to use higher gains for the controllers, what makes the system to
respond faster. However, the windup phenomenon can arise. To avoid it, anti-windup
circuits are also used and therefore, the system becomes non-linear. Because of this,
an optimum tuning of the controllers may become a difficult task. In order to explore
different possibilities, firstly, the speed and position control problems are formulated
so that only one objective is minimised. Within this single-objective optimisation
context, the PSO and SA algorithms are used to tune the controller parameters,
them, the capability of each one is investigated when compared to each other. Multi-
objective formulations are also explored to address three objectives simultaneously.
In this part of the work, the multi-objective evolutionary algorithms NSGA-II and
SPEA2 are used. All algorithms were implemented in MATLAB and the electric
drive models were developed in the SIMULINK environment. Simulation results are
presented showing that for the single-objective formulation, for both, the for speed
and position control problems, the PSO algorithm outperformed the SA. For the
multi-objective formulation, the SPEA2 algorithm presented better characteristics
with respect to the Spread quality indicator in the only, when compared to NSGA-II.
Furthermore, it’s shown to outperform the NSGA-II with respect to the Hypervolume
indicator within the position control problem. A series of tests were carried out by
varying the values of the main parameters setting for each algorithm. However, in
most cases, no statistically significant advantage was observed. In general, the results
presented demonstrate the ability of the algorithms to find optimal tuning for the
controllers, either for the single-objective or the multiple and conflicting objectives
problem.

Keywords: Optimisation, computational intelligence, metaheuristics, multi-objective
evolutionary algorithms, algorithm configuration, electric drives, speed control,
position control, DC motor.
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CHAPTER 1

Introduction

In most areas of engineering, problems involving dynamic systems are very common.
Most of them must present a desirable behaviour to produce useful application, thus
demanding some action by using correct control strategies. Such systems are usually found
in industry and are considered in many different applications such as printers, plotters,
escalators, conveyor systems, manufacturing and film making processes, among many
others. Depending on the control strategy, the performance of the controlled system may
not meet the requirements which are necessary for a specific problem. Should non-linearities
and/or parameters variations be present, the performance may be reduced, or the control
performance may not no longer meet the requirements. Within this context, several control
structures have been studied and improved over the decades.

Within the classical control theory, the traditional Proportional-Integral (PI)
controllers are very common and largely used in linear control systems. In electric drive
systems, they are commonly used for torque, speed, and position control for industrial
application and, in most of the cases, must present a good speed holding capability against
disturbance and/or parameter variation, for instance.

PI controllers are well known and used worldwide. However, there are applications
where the system presents non-linearities such as saturation and/or parameter variation,
for instance. In such case, the desired performance of the controlled system does not
perform optimally in terms of disturbance rejection, noise attenuation and/or trajectory
tracking. However, depending on the degree of the system to be controlled, tuning the
controller may become a difficult task.
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Some different classical strategies to tune the PI controller have already been
proposed and discussed in the literature. One of the most commonly used methods, which
is still widespread, was presented by Ziegler and Nichols (ZIEGLER; NICHOLS et al., 1942).
Other well-known techniques include Chien, Hrones, and Reswick (CHIEN; HRONES;
RESWICK, 1952), Cohen and Coon (COHEN; COON, 1953), and Internal Model Control
(GARCIA; MORARI, 1982). Even though, the study of new strategies are still investigated
in constant relevance in the academic and industrial areas (DUTTA; KUMAR; PANKAJ,
2014; SEN et al., 2015; CHIDAMBARAM; SAXENA, 2018). However, should the system
presents high order transfer function or non-linearities, reaching an optimal tuning may
become a difficult task. In such cases, an alternative tuning method must be considered
such as optimisation methods supported by metaheuristics.

From the point of view of accuracy, a purely mathematical approach to the study
of automatic control systems may be preferred by many engineers. However, depending on
the system, the mathematics involved can be excessively difficult and not practical. On
the other hand, metaheuristic optimisation algorithms, despite not always guaranteeing a
global optimum, provide feasible solutions in a satisfactory length of time. In this way,
such computational intelligence techniques are useful and have been consolidating in recent
decades, becoming an area of growing interest (RODRÍGUEZ-MOLINA et al., 2020).

Within the field of computational intelligence, metaheuristics have been widely
used to solve real-world optimisation problems. Such algorithms orchestrate an interaction
between local improvement procedures (heuristics) and high-level strategies that aims to
create processes capable of avoiding local minima and perform a robust search within the
searching space (GENDREAU; POTVIN et al., 2010). Thus, heuristics are specialised in
solving problems with domains while metaheuristics have a more general characteristics,
which makes them commonly used to solve different problems where classical methods
may not be feasible.

To apply a metaheuristic to a problem, is necessary to define a function from
which it is possible to evaluate the quality of the generated solutions, known as fitness or
objective function. Thus, within the context of optimisation, a problem can be formulated
and classified according to their number of objectives; it can be single-objective for one
objective or multi-objective (MOPs) for more than one. Regarding to applications, it is
increasingly demanded to meet several specifications simultaneously, which tend to present
conflicting necessities with each other (FASIH et al., 2018). In the particular scope of this
work, different configurations of controller parameters imply different levels of satisfaction
for each demand. Fortunately, tuning controllers with multiple objectives can be treated
as a multi-objective mathematical programming problem, which allows the use of several
multi-objective optimisation techniques to find a set of solutions that can be used to solve
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a problem. Then, based on preferences, the designer can choose the solution that best fits
the demand (RODRÍGUEZ-MOLINA et al., 2020).

The use of computational intelligence techniques in control engineering is defined
by Ruano et al. (2014) as intelligent control. In general, some examples of single-objective
algorithms can be cited: Genetic Algorithm (GA), Ant Colony Optimisation (ACO),
Particle Swarm Optimisation (PSO), Simulated Annealing (SA) and Memetic Algorithm
(MA) (AGRAWAL et al., 2021). In the context of multi-objective algorithms Non-dominated
Sorting Genetic Algorithm II (NSGA-II), Strength Pareto Evolutionary Algorithm 2
(SPEA2), Multi-Objective Evolutionary Algorithm Based on Decomposition (MOEA/D)
and Multi-Objective Particle Swarm Optimisation (MOPSO) have been studied by different
researchers worldwide (TIAN et al., 2021).

Within the context of electric drives, applications with speed and/or position control
find uncountable industry applications. However, due to the complexity of the control
system, number of parameters to be adjusted and inherently present non-linearities, an
optimal tuning of the controllers may become a difficult task. Furthermore, many different
system restrictions applies and/or goals must be achieved, what may add more difficulties
to the designer to find the best tuning for the controllers. A couple of publications on
the speed and position control, with alternative control approach together with the use
of stochastic search and optimisation techniques, can be found (SILVA; ACARNLEY;
FINCH, 2001; SANTOS et al., 2021a; VILLARREAL-CERVANTES et al., 2017). Some
problems have a single objective to be met (WONG; HOO; MOHYI, 2018; MANIKANDAN;
ARULMOZHIYAL, 2014) while others, target a multi-objective one (SARDAHI; BOKER,
2018; SANPRASIT; ARTRIT, 2019).

This dissertation presents a comparative study of performance between a set of
algorithms when used to find the best tuning of a set of PI controllers, for speed and
position control of a separately excited DC motor drive. The problems are formulated in
two ways, single-objective and multi-objective problem. The general and specific objectives
are described in the following section.

1.1 Objectives
The main objective of this work is to use and compare different optimisation

algorithms applied to a DC motor drive system. Two different scenarios for speed and
position control of a separately excited DC motor drive system are explored. The first
consists of a single-objective whereas the other one, a multi-objective formulation problem,
which admits more objectives to be explored and satisfied at the same time.

It is important to highlight that, although the speed and position control problems
are explored separately, they are similar. Nevertheless, they are treated as two distinct
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problems. In the first one, the algorithms must tune the speed controller and, in the second
one, the position controller.

More specifically, the objectives are as follows:

• Investigate the impact of different parameter settings for the PSO, SA, NSGA-II,
and SPEA2 algorithms when applied to controller tuning problems in electric drives;

• Apply and compare the performance of two different metaheuristics (PSO and SA),
for the single-objective formulation of the speed and position control of a DC motor
drive system problems;

• Evaluate the performance of the implemented multi-objective metaheuristics (NSGA-
II and SPEA2) for the speed and position control problems;

• Compare the multi-objective algorithms based on a set of three quality indicators;

• Validate the results through statistical tests;

• Evaluate how the performance of each metaheuristic varies when applied to different
problems;

• Perform the analysis of the control parameters obtained for the controllers in the
different scenarios.

1.2 Text Organisation
The dissertation is divided into six chapters where the first one is the Introduction.

The second one presents a literature review on metaheuristics; the third one presents the
problem characterisation; in the fourth and fifth chapters, results are presented. The sixth
chapter presents a general conclusion of this work.

The chapters are described next:

• Chapter 2 - covers basic concepts of optimisation, metaheuristics, multi-objective
problems, multi-objective algorithms and quality indicators;

• Chapter 3 - presents a description of the system, in which the DC motor is modelled
as a block diagram, and the speed and position control problems are formulated.
The need and use of anti-windup circuits are also briefly explored. The objective
functions are presented and the statistical tests used to compare the performance of
the algorithms are described;

• Chapter 4 - presents the results obtained using the single-objective PSO and SA
algorithms;
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• Chapter 5 - shows the results referred to the multi-objective formulation, obtained
by the NSGA-II and SPEA2 algorithms;

• Chapter 6 - presents the final remarks and future work.



26

CHAPTER 2

Optimisation and Computational Intelligence

This chapter presents theoretical concepts that gives support to the studies pre-
sented in this work, on the optimisation and methods by using computational intelligence.
In Section 2.1 general concepts associated with optimisation problems are introduced.
Sections 2.2 and 2.3 presents the descriptions of heuristic and metaheuristic techniques
as well as the single-objective PSO and SA algorithms. In Section 2.4 the basic concepts
of multi-objective optimisation are presented and, in the Section 2.5, the general aspects
of evolutionary algorithms are discussed along with details on the multi-objective ones
(NSGA-II and SPEA2). Finally, in Section 2.6, some quality indicators used for performance
evaluation within the context of multi-objective optimisation, are presented.

2.1 Optimisation Problems
An optimisation problem consists of finding extreme values (minimum or maximum)

for a fitness function. For this purpose, a set of decision variables x = (x1, x2, ..., xn) have
to be considered and represent a possible solution for a problem. In this context, the fitness
function can be: i)continuous when the variables assume real values; ii) discrete when the
variables assume integer or discrete values; and iii) mixed when it contains continuous
and integer variables (BARBOSA, 2017).

A problem is said to be an optimisation one because the solutions found are the best
possible among all the solutions in the search space, being then called optimal solutions
(BECCENERI, 2008). A mathematical definition for optimisation problems is as follows.
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Given the function f : Ω → R, where Ω is a set of real numbers, a vector X0 ∈ Ω is
optimal if:

• f(X0) ⩽ f(X), ∀X ∈ Ω (minimisation);

• f(X0) ⩾ f(X), ∀X ∈ Ω (maximisation).

Most optimisation problems in the real world are very difficult to solve, requiring
long time to reach to an end. Because of this, the use of computational resources is
essential. The algorithms to solve this type of problem can be deterministic or stochastic.
The deterministic ones are those that, for a given input, the output always will be
the same. Some examples are the simplex method, conjugate gradient and Newton’s
method. Stochastic algorithms, as described in the next sections, make decisions based on
probabilities and used random-valued parameters subject to statistical perturbations, and
this means that the final result may vary for the same input (which is why are also known
as non-deterministic) (BARBOSA, 2017).

2.2 Heuristics
Heuristic methods for optimisation are developed to quickly solve complex and

large-scale problems, for which exact methods would require impractical computational
time. Such methods use some knowledge about the problem (or about some set of solutions)
to take shortcuts and fast find high-quality solutions, which are not necessarily the global
optimum. Thus, heuristics produce a balance between computational effort and quality
solutions. To achieve this balance, it is necessary to have some prior knowledge about the
characteristics of the problem, and thus explore the search space more efficiently. And it is
this knowledge that guides the algorithm, reducing the investigated search space (MELO,
2009).

Figure 2.1 exemplifies a search surface of a continuous problem. Assuming it is a
maximisation problem, three important characteristics can be identified:

• Flat region: regions in which an algorithm may face difficulties in identifying the best
direction to follow. In this type of location, the algorithm performs a blind search;

• Local optima: when the algorithm identifies one or more points that have higher
quality results, the search starts to be carried out in the neighbourhood of these
points. There are practical problems in which local optima are satisfactory;

• Cliff region: steep local optima. In contrast to the typical local optima, where
minor adjustments to surface coordinates lead to commensurate changes in fitness
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function values, cliff regions demonstrate abrupt shifts in function values with even
slight changes in the coordinates. Consequently, navigating such regions efficiently
is essential, as algorithms may become trapped in peaks, which may be unsuitable
local optima.

Figure 2.1 – Search space of a continuous problem: i) Flat region; ii) Local optima and iii) Cliff region.

Reference: author

Within the context of flat, local optima and cliff regions, it is evident that a heuristic
restricting the search space, even in a probabilistic way, can prevent the algorithm from
reaching the cliffs and find the global optimum. Furthermore, algorithms that perform a
local analysis of the surface behaviour can drive solutions towards the sub-optimal regions.
This effect becomes more evident if the search space is large and/or the number of flat,
local optima and cliff is greater. As heuristics and other local search techniques are often
applied to find the optimum of a neighbourhood, they become unsuitable for use in global
optimisation problems (MELO, 2009).

Over the past decades, a wide variety of research has been carried out in the
development of simple and generic algorithms (AGRAWAL et al., 2021), seeking to
solve complex problems for which there are no adequate heuristics and even local search
algorithms are unable to find satisfactory solutions. Among the main techniques that have
been developed to overcome this challenge are the metaheuristics, described in Section 2.3.
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2.3 Metaheuristics
The term metaheuristic was coined by Glover (1986). It refers to a general algo-

rithmic search framework applied to optimisation problems for which there is no exact
or satisfactory heuristic method capable of solving them. Metaheuristics have the ability
to find feasible solutions for problems of realistic size in reasonable computation time
(MAASHI, 2014).

The advantages of employing metaheuristic algorithms are derived from their prop-
erty of being derivation-free, in addition to their simplicity, flexibility, and ability to avoid
local optima (MIRJALILI; MIRJALILI; LEWIS, 2014). Metaheuristics exhibit stochas-
tic behaviour, in contrast to deterministic algorithms, and commence the optimisation
process by generating random solutions. A crucial characteristic of these algorithms is
their problem-independent classification, allowing for easy customisation according to the
problem domain, and demonstrating remarkable aptitude in circumventing premature
convergence. They are successfully applied to several engineering and science problems,
for example in electrical engineering (to find optimal solutions for power generation),
industrial fields (scheduling jobs, transportation, vehicle routing problem and facility
location problem), civil engineering (to design the bridges and buildings), communication
(radar design and networking) and data mining (classification, prediction, clustering and
system modeling) (AGRAWAL et al., 2021).

To make the understanding on the difference between heuristics and metaheuristics
clearer, one can say that heuristic methods are usually efficient to find local optima. Then,
cannot be applied globally due to dependence on information from the problem domain to
restrict the search space. On the other hand, metaheuristics are characterised as high-level
techniques, applied to global optimisation problems with multi-modal objective functions,
for which there is a large number of high-quality solutions around the neighbour ones but
only a few or a single one is the global optimum (BARA’A et al., 2021). To exemplify, it
can be said that a genetic algorithm is a metaheuristic, while the Ziegler-Nichols method
is a heuristic.

2.3.1 Classification of Metaheuristic Algorithms

In the literature, there are different perspectives on the classification of metaheuris-
tics. Agrawal et al. (2021) classifies into the following two main categories:

• Single-solution based algorithms - These techniques start the optimisation process
with a single solution and update it throughout the iterations. Such algorithms
may suffer from two limitations. Firstly, the algorithm may become trapped in local
optima, resulting in suboptimal solutions. Secondly, the search space may not be
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explored extensively, limiting the algorithm’s ability to identify optimal solutions in
complex problems;

• Population-based algorithms - Initially, these algorithms generate a population
of solutions before starting the optimisation process. The population of possible
solutions is updated along the generations/iterations. The algorithms are capable to
avoid local minima since multiple solutions assist each other, providing a greater
exploration capability of the search space. Furthermore, they have the capability to
jump towards the promising area of the search space.

Researchers have given special attention to metaheuristic algorithms because of
their characteristics. Several algorithms have been emerged and solved different types of
problems. Based on their behaviour, the metaheuristic algorithms can be divided into
three main categories (AGRAWAL et al., 2021):

• Evolution-based algorithms - Are inspired by natural evolution and starts the process
with a randomly generated population of possible solutions to the problem. In this
sort of algorithms, the best solutions are put together to create new individuals. The
new individuals are formed by using a crossover function and mutation is applied.
The most popular algorithm in this category is the genetic algorithm. There are
other algorithms such as evolution strategy, genetic programming and differential
evolution, for instance;

• Swarm intelligence-based algorithms - These algorithms are inspired by the social
behaviours of insects, animals, fishes or birds. Like evolution-based algorithms, they
also use the concept of population. Among the most popular ones are the Particle
Swarm Optimisation and Ant Colony Optimisation;

• Physics-based algorithms - These are inspired by the rules of physics in the universe.
Simulated Annealing and Harmony Search are known examples.

2.3.2 Criteria for Algorithm Selection

In terms of the wide variety of philosophies and characteristics of these algorithms,
the criteria established for choosing those that will be used in this work were the following:
the first algorithm is the Particle Swarm Optimisation (PSO), which according to Hussain
et al. (2019), between 1983 and 2016, it was the most prevalent algorithm, appearing in
23.16% of all metaheuristic publications. The distinction between the PSO and the other
methods is significant, being the most adopted due to its relative simplicity and effectiveness
in several scientific fields. The second algorithm chosen was Simulated Annealing (SA),
which appeared in only 2.13% of metaheuristic publications (HUSSAIN et al., 2019),
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placing it as the tenth most commonly used algorithm. Nevertheless, SA was selected due
to its distinctive characteristics, as it is the most frequently used algorithm featuring a
single-solution mechanism and based on physical principles.

Therefore, the PSO algorithm represents the group of metaheuristics based on
population, as well as swarm intelligence, and the SA algorithm, the group that uses a
single-solution and is physically inspired. The class of genetic algorithms, for reasons that
will be described in Section 2.5, are used in the multi-objective formulation. It is evident
that there is a significant number of metaheuristics, and the application of all of them is
not feasible, therefore, the algorithms used in this work were chosen due to their popularity
and because they present distinct aspects in terms of behaviour.

2.3.3 Particle Swarm optimisation (PSO)

The Particle Swarm optimisation algorithm was developed by Kennedy and Eber-
hart (1995) for solving non-linear problems. It has been thought to mirror the social
behaviour of a bird flock aiming to discover patterns that guide the ability of birds to fly
synchronously and, suddenly, change direction with regrouping in an optimal formation.
With this aim, the concept has evolved to a simple and efficient optimisation algorithm
(SANTOS et al., 2021b).

Within the PSO algorithm, each individual is referred to as a particle that flies
within a multi-dimensional search space. The particle’s position changes according to the
tendency of the individuals to emulate the success of each other. Then, the changing of
a particle’s location within the swarm is influenced by the knowledge and experience of
its neighbours. Therefore, the global or collective success of the swarm lies on finding an
optimal region within a searching space where each particle represents a potential solution
to the problem.

Be xi(t) the position vector of the particle i within the search space at a discrete
time step t. The position of each particle is adjusted by adding a velocity vector vi(t) to
the particle’s current position, i.e.,

xi(t + 1) = xi(t) + vi(t + 1), (2.1)

with xi(0) ∼ U(xmin, xmax).

The concept of going after an optimum position is given by the changing of the
velocity vector of each particle in time. It means that each particle changes its position
according to the position of a better located one. The velocity vector drives the optimisation
process.

There are several ways to select which individual is going to influence others at
each iteration or time step. However, there are two most used ones, which topologies are
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shown in Figure 2.2. Within the ring shape topology, as shown in Figure 2.2b, each particle
has information only on its two closest neighbours. Different from the ring one, within
the star topology, as shown in Figure 2.2a, every single individual can correspond to one
another.

Figure 2.2 – Example social network structures for PSO.

(a) Star. (b) Ring.

Reference: (ENGELBRECHT, 2007)

While many studies have been done using different topologies, there is no outright
best topology for all problems. In general, the fully connected structures perform best for
multi-modal problems, while the less connected structures perform better on uni-modal
(PEER; BERGH; ENGELBRECHT, 2003). Therefore, due to the nature of the problem,
the star topology is the most suitable for this work, in which there is no prior knowledge
of the characteristics of the evaluation criteria.

The velocity of particle i is computed as:

vij(t + 1) = w(t)vij(t) + c1r1j(t)[yij(t)− xij(t)] + c2r2j(t)[ŷj(t)− xij(t)] (2.2)

Where:

• w(t) - Inertia weight;

• vij(t) - Velocity of particle i in dimension j (j = 1, 2, ..., n) at time step t;

• xij(t) - Position of particle i in dimension j at time step t;

• yij(t) - The personal best position in dimension j, associated with particle i is the
best position the particle has visited since the first time step;

• ŷj(t) - The global best position in dimension j at time step t;

• c1 - Cognitive component;
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• c2 - Social component;

• r1j(t), r2j(t) - Random values within the range [0, 1], sampled from a uniform
distribution.

The velocity calculation consists of three terms (ENGELBRECHT, 2007):

• The previous velocity, w(t)vi(t), which serves as a memory of the previous flight
direction. This memory term can be seen as a momentum, which prevents the particle
from drastically changing direction, and to bias towards the current direction;

• The cognitive component, c1r1(yi−xi), which quantifies the performance of particle i

relative to its past performances. In other words, the cognitive component resembles
the individual’s memory of its own best position within the swarm. The effect of this
term is that the particles are drawn back to their own best positions, resembling the
tendency of individuals to return to situations or places that most satisfied them in
the past;

• The social component, c2r2(ŷ− xi), which quantifies the performance of particle i

relative to a group of particles, or neighbours. Conceptually, the social component
resembles a group norm or standard that individuals seek to attain. The effect of
the social component is to drive each particle is towards the best position found by
the particle’s neighbours.

The effect of the velocity equation can easily be illustrated in a two-dimensional
vector space. Figure 2.3a illustrates the state of the swarm at time t. The new position,
x(t + 1), moves closer towards the global best ŷ(t). For time step t + 1, as illustrated
in Figure 2.3b, the particle’s own best position does not change. The figure shows how
the three components contribute to the particle’s own moving towards the global best
one. The cumulative effect of all the position updates of a particle is that each particle
converges to a point on the line that connects the global best position and the self-best
best position of the particle (ENGELBRECHT, 2007).

The constants c1 and c2 are also referred to as trust parameters, where c1 expresses
how much confidence a particle has on itself, while c2 expresses how much confidence a
particle has on its neighbours (ENGELBRECHT, 2007). For the case c1 >> c2, particles
may find difficulties to converging to close positions, while otherwise, whereas otherwise,
c1 << c2, particles may quickly fall into a local minimum and fail to move out. The
usual approach is to make both coefficients to have the same values, thus giving equal
importance to one’s own knowledge and to collective one (EBERHART; SHI; KENNEDY,
2001).
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Figure 2.3 – Geometrical illustration of velocity and position updates for a single two-dimensional particle.

(a) Time step t.

(b) Time step t + 1.

Reference: author

The inertia weight, w(t), was introduced by Shi and Eberhart (1998) as a mechanism
to control the exploration and exploitation abilities of the swarm, by controlling the
contribution of the particle’s previous velocity into the current one, weighing the impact
of vi(t) over vi(t + 1). Higher values of w(t) make the exploitation easier by enhancing
diversity. On the other hand, lower values gives room to a more refined local exploration.
However, it is important to highlight the important of relationship between the values
of w(t) and the acceleration coefficients (c1 and c2), since Bergh and Engelbrecht (2006)
showed that:

w(t) >
1
2(c1 + c2)− 1 (2.3)
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guarantees convergent particle trajectories. If this condition is not satisfied, divergent or
cyclic behaviour may occur.

Two main approaches to dynamically vary the inertia weight can be grouped into
the following categories:

• Random adjustments: From Peng, Chen and Eberhart (2000) and defined as:

w(t) = c1r1(t) + c2r2(t) (2.4)

• Linear decreasing: as suggested in Ratnaweera (2002), the linear decreasing starts
with a high inertia weight (usually 0.9) and is linearly reduced up to 0.4, according
to Equation 2.5.

w(t) = (w(0)− w(nt))
(nt − t)

nt

+ w(nt) (2.5)

Where:

– nt - The maximum number of iterations;

– w(0) - Initial inertia weight value;

– w(nt) - Final inertia weight value.

The pseudo code of the PSO algorithm is presented as follows:

Algorithm 1 PSO - Minimisation Problem
1: function PSO()
2: Initialise population
3: Evaluate population
4: for t=1: Maximum number of iterations do
5: for i=1: Population size do
6: Update the velocity, vi(t)
7: Update the position, xi(t)
8: Evaluate solution
9: if xij(t) < yij(t) then

10: yij(t)← xij(t)
11: end if
12: if xij(t) < ŷj(t) then
13: ŷj(t)← xij(t)
14: end if
15: Update inertia weight
16: end for
17: t=t+1
18: end for
19: return ŷ
20: end function
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2.3.4 Simulated Annealing (SA)

Simulated annealing (SA) is a search algorithm proposed by Kirkpatrick, Jr and
Vecchi (1983), and it is considered the first metaheuristic approach to use an explicit
method that accepts worse solutions to escape from local optima. Initially, SA was used to
tackle combinatorial optimisation problems (often within the discrete problem domain). It
was later expanded to include continuous time problems (MAASHI, 2014). The concept of
SA is based on the Metropolis algorithm for statistical mechanics developed by Metropolis
et al. (1953). The Metropolis algorithm is a model for simulating the physical annealing
process with solid materials like metals and glass. These materials are placed in a heat bath
under a high temperature and then gradually cooled down according to an appropriate
cooling schedule until they reach a thermal equilibrium state (HENDERSON; JACOBSON;
JOHNSON, 2003).

The mathematical basics underlying annealing are derived from Boltzmann’s
distribution, which is defined as:

P (i) = 1
N0

exp
(
−E(i)

kT

)
(2.6)

Initially, a sufficiently large thermodynamic system is considered. Within this
context, the system can admit i possible states where each one has an associated energy
level, E(i). Then, P (i) represents the probability of the system reach an i energy state.
Based on such theory, it is assumed that, when the arrangement of the atoms is stable, the
probability of the system’s energy to be E is proportional to exp (−E/kT ). Consequently,
the probability of a system’s energy to be (E + dE) can be determined according to
Equation 2.7 (SANTOS et al., 2021a).

prob(E + dE) = prob(E) exp
(
−dE

kT

)
(2.7)

Where:
dE = E(i + 1)− E(i) (2.8)

It means that as the system’s temperature cools down according to a cooling
coefficient, α, the probability of its energy state to change is reduced to the point which
represents the minimum energy state.

The SA algorithm starts with high-temperature values and an initial solution, x,
randomly generated. During the optimisation process, the temperature is slowly decreased
and at each iteration, a new solution, x′, is generated in the neighbourhood of the previous
one. Next, the difference between the two solutions is computed as ∆ = f(x′)− f(x). If ∆
is less than zero, means that the solution x′ is better than x (in a minimisation problem),
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so the current solution is changed. However, if ∆ > 0, a real number r ∈ [0, 1] is randomly
generated, and if r < exp (−∆/T ), then the current solution x is also replaced by x′. After
this process, an iteration is passed, the system’s temperature is reduced, and the search
continues until the stop criteria are satisfied.

It should be noted that the larger the distance between the new solution compared
to the current one in the objective space, the smaller the acceptance probability. It is also
applied to the temperature, i.e., the lower the temperature the smaller the probability
of the new solution to be accepted when compared to the current one. Together, these
characteristics, assure that local minima are avoided.

Acceptance Probability =


exp

(
−∆

T

)
, if f(x′) > f(x)

1 , if f(x′) < f(x)
(2.9)

Another important parameter, N , commonly used, is related to the number of
tested solutions within each temperature level. That is, given a fixed temperature T , there
are several energetic possibilities within, i.e, different states that need to be explored.
Normally, in literature problems, this value is adjusted according to the complexity of the
problem. In this work, different values for N will be considered to verify their impact on
the convergence of the algorithm.

A pseudo code of SA algorithm is shown as follows:

Algorithm 2 SA - Minimisation Problem
1: function SA()
2: Initialize parameters
3: x← Initial Solution
4: while stop criteria is not reached do
5: for i=1: N do
6: Generate a neighbour x′ within x neighbourhood
7: ∆← f(x′)− f(x)
8: if ∆ < 0 then
9: x← x′

10: else if random[0, 1] < exp (−∆/t) then
11: x← x′

12: end if
13: end for
14: T ← αT
15: end while
16: return x
17: end function
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2.4 Basic Concepts of Multi-Objective Optimisation
A multi-objective optimisation problem (MOP) can be defined as:

min F(x) = (f1(x), ..., fm(x))
subject to: x ∈ Ω

(2.10)

where x = (x1, ..., xn) ∈ Rn is a candidate solution, F : Rn → Rm comprises all m

conflicting objectives, and Ω ⊂ Rn is the search space, such as Ω = {x ∈ Rn|hi(x) ≤
0;∀i = 1, ..., nh}, where its image F(Ω) defines the feasible set, and h represents a set of
nh constraints (LOPEZ, 2017).

Within multi-objective optimisation, two solutions can be evaluated using the
Pareto Dominance concept. A solution x is said to dominate another solution y (denoted
by F(x) ≺ F(y)) if and only if, x is better or equal than y in all objectives and has at least
one of the objectives where x is better than y. In mathematical terms can be described as:
fk(x) ⩽ fk(x′)∀k ∈ {1, ..., m} ∧ ∃k|fk(x) ̸= fk(x′) (COELLO et al., 2007a).

Therefore, a solution x∗ is Pareto Optimal for 2.11 if there is no other solution
x such that F(x) ≺ F(x∗), and the set of all Pareto Optimal solutions is called Pareto
Optimal Set (LOPEZ, 2017), defined as:

PS = {x∗ ∈ Ω|x ∈ Ω : F(x) ≺ F(x∗)} (2.11)

Another important concept is the Pareto Front, which is defined as the image of
the Pareto Optimal Set, is:

PF = {F(x∗)|x∗ ∈ PS} (2.12)

Figure 2.4 presents a two-objective minimisation problem, in which the Pareto
Front (in black) and a set of dominated solutions (in red) are shown. Two non-dominated
solutions (s1 and s2) are highlighted, and both belong to the Pareto Front. Solution s1

prioritises objective 2 while s2 objective 1. There are 14 other solutions that are also
non-dominated. Thus, if only one solution has to be selected, it is necessary that a decision
maker perform a trade-off between the 16 solutions found.

Represented in blue in Figure 2.4, the nadir point represents the worse possible
solution for the problem. The nadir point is important since it is used as the reference
point by some quality indicators, enabling to compare different algorithms performance
on solving MOPs (CARVALHO, 2022).
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Figure 2.4 – Two objective Pareto Front minimisation example.

Reference: author

2.5 Multi-Objective Evolutionary Algorithms (MOEAs)
Evolutionary Algorithms (EAs), within the context of multi-objective optimisation,

are widely disseminated and used successfully in real-world applications (VACHHANI;
DABHI; PRAJAPATI, 2015). This is a group of bio-inspired metaheuristics, which refers
to systems that use computational models of evolutionary processes, such as natural
selection, survival of the fittest and reproduction, as the fundamental components to
perform optimisation procedures.

The different ways in which the EA components are implemented result in different
evolutionary computation paradigms: genetic algorithms (GAs), genetic programming
(GP), evolutionary programming (EP), differential evolution (DE) and co-evolution (CoE).

These algorithms are constituted by a population of candidates (called individuals
or chromosomes) for solutions to an optimisation problem. To each individual a fitness
value is assigned, which numerically represents the quality of the solution. Analogous to
the concept of iteration in other algorithms, in EAs the term generations also can be used,
in which at each pass, the population is modified through some operators, which aim to
obtain better solutions.

The main operators in genetic algorithms are: selection, crossover and mutation.
The selection operator selects solutions from the population while the crossover operator
performs the combination of two individuals, generating new possible set of solutions.
These new solutions can suffer the influence of the mutation operator, which performs
changes in the codified structure of the decision variables, also known as genes. From the
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application of these operators, there are new solutions and those with the best evaluation
are maintained for the next generation (SILVA et al., 2014).

The Multi-Objective Evolutionary Algorithms (MOEAs) are extensions of EAs for
multi-objective problems. MOEAs can be classified into three main categories that which
define the type of adopted approach, based on Pareto dominance, preferences and methods
that use aggregation functions (LI et al., 2015). This work is restricted to methods based
on Pareto dominance, which, in a simplified way, use the concept of fronts to select and
order the best solutions.

2.5.1 Criteria for Algorithm Selection

The multi-objective algorithms chosen to be implemented and studied in this work
were NSGA-II and SPEA2. The first reason for choosing these algorithms is the fact that
both are based on evolutionary principles. The evolutionary behaviour is desirable because
the other algorithms considered in this work already encompassed groups of metaheuristics
based on swarm intelligence and physics, as discussed in Section 2.3. The second motivation
is associated with the literature review, in which according to Rodríguez-Molina et al.
(2020), evolutionary algorithms are the mostly used in controller’s tuning problems, being
present in 51% of related works. The most commonly used is the NSGA-II algorithm,
followed by SPEA2 (RODRÍGUEZ-MOLINA et al., 2020). In the following subsections,
the particular characteristics of each selected algorithm are described.

2.5.2 Non-dominated Sorting Genetic Algorithm II (NSGA-II)

NSGA-II is an improved version of the non-dominated sorting genetic algorithm
(NSGA) (SRINIVAS; DEB, 1994), which has been criticised by researchers due to its
limitations such as the absence of elitism, the need to define sharing parameters for
diversity preservation, and its high computational complexity. On the other hand, the
NSGA-II, proposed by Deb et al. (2002), is considered one of the most efficient MOEAs
and exhibits the property of elitism and does not need any sharing parameter (VERMA;
PANT; SNASEL, 2021).

The philosophy of NSGA-II is based on four main principles: Non-Dominated
Sorting, Elite Preserving Operator, Crowding Distance and Truncation Operator (VERMA;
PANT; SNASEL, 2021). These are briefly described below:

• Non-dominated sorting - In this procedure, the population members are sorted using
the concept of Pareto dominance. The process begins by performing a classification
in order to identify which are the non-dominated members of P . These first-ranked
members are then placed in the first front and removed from the population P . Next,
the non-dominating sorting procedure is performed on the remaining population
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members. Further, to the non-dominated members of the remaining population are
assigned the second rank and placed in the second front. This process continues until
the whole population members are put on different fronts according to their ranks
(VERMA; PANT; SNASEL, 2021). This concept is illustrated in Figure 2.5.

Figure 2.5 – Non-dominated sorting.

Reference: author

• Elitism - Elite preserving strategy retains the elite solutions of a population by
directly transferring them to the next generation. In other words, the non-dominated
solutions found in each generation move on to the next generations until some
solutions dominate them.

• Crowding distance - The crowding distance is computed to estimate the density of
solutions surrounding a particular solution. This operator evaluates the distance of
a solution i to its nearest neighbours (i− 1) and (i + 1) within the objective space.
This distance is calculated as a normalised semiperimeter, according to Equation
2.13 and represented in Figure 2.6.

CD(i) =
m∑

j=1

f i+1
j − f i−1

j

fmax
j − fmin

j

(2.13)

Solutions with a higher value of Crowding distance are privileged because they
represent greater diversity. It should be noted that the solutions that are in extremities
receive a value of CD =∞.

• Truncation Operator - The population for the next generation is selected using
a crowded tournament selection operator, which uses the rank of the population
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Figure 2.6 – Crowding distance.

Reference: author

members and their crowding distances for the selection. The rule for selecting one out
of two population members for the next generation is i) Should both the population
members have different ranks, then the one with the better rank is selected for the
next generation, ii) If both the population members are of the same ranks, then the
one with the higher crowding distance is selected for the next generation (VERMA;
PANT; SNASEL, 2021).

The procedure of NSGA-II begins with an initial population Pt of size NP . Then,
a new population of descendants, Qt, is generated from the genetic operators applied on
Pt. Next, the population Pt and Qt are combined to form a new population Rt, and the
non-dominated sorting procedure is performed. Then, the members of Rt are ranked into
different fronts and the crowding distance for each individual is calculated.

The next procedure is to apply the Truncation Operator in Rt, to create the next
population Pt+1, of size NP . This process is repeated until a stop criteria is satisfied, which
is usually a maximum number of generations or a number of evaluated solutions.

The pseudo-code of the NSGA-II algorithm is shown in Algorithm 3.

2.5.3 Strength Pareto Evolutionary Algorithm 2 (SPEA2)

The Strength Pareto Evolutionary Algorithm 2 (SPEA2) was proposed by Zitzler,
Laumanns and Thiele (2001) and presents two main differences when compared to NSGA-
II: the way of ranking the solutions and the use of elitism through an external population
named archive (CARVALHO, 2022). SPEA2 introduced the concept of strength value to
select new solutions to compose the next generations. The algorithm also incorporates a
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Algorithm 3 NSGA-II - Minimisation Problem
1: function NSGA-II()
2: Initialize parameters
3: Initialize population Pt

4: Evaluate population
5: Generate Child Population Qt

6: Rt ← Pt ∪Qt

7: while stop criteria is not reached do
8: for i=1:length(Rt) do
9: Assign Rank based on Pareto Dominance

10: Generate sets of non-dominated solution
11: Calculate Crowding Distance
12: Add the solutions for the next generation starting from the first front until

reaching NP individuals
13: end for
14: Select points on the lower front with high crowding distance
15: Apply crossover and mutation operators
16: Create next generation
17: end while
18: return PF
19: end function

fine-grained fitness assignment strategy, which considers for each solution the number of
solutions that it dominates and that it is dominated by.

In SPEA2, an initial population Pt is created with NP individuals and an archive
At, of size NA is used to store the best solutions. Then, the individuals are evaluated the
objective functions.

For all individuals, a strength value is computed, indicated by S(i), and represents
the number of solutions that a certain individual dominates.

S(i) = |{j|j ∈ Pt ∪ At ∧ i ≺ j}| (2.14)

To each individual a value called Raw Fitness is assigned, which is equivalent to
the sum of the strength values of the individuals that dominate the one which is being
analysed, both in the population and in the archive.

R(i) =
∑

j∈Pt∪At|i≻j

S(j) (2.15)

Thus, the greater the strength value of an individual, the more individuals are
dominated by it. The smaller the raw fitness value, the fewer individuals dominated it.

To provide information about neighbour density (similar to what crowding distance
represents for NSGA-II) and guide the search effectively, SPEA2 uses a technique adapted
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from the k-nearest neighbours algorithm (KNN) (FIX; HODGES, 1989), which considers
the inverse of the distance to the kth nearest neighbour as a density estimate. One way
to do this is to consider the term k =

√
NP + NA as a common point and list the results

obtained for all individuals. After sorting in ascending order, the kth element will be the
one that gives the smallest searched distance, denoted by σk

i . Therefore, the density D(i),
corresponding to the individual i, is given by the equation 2.16.

D(i) = 1
σk

i + 2 (2.16)

Finally, based on the raw fitness value and the neighbour density, it is possible to
assign a fitness F (i) to each individual, defined by the equation 2.17.

F (i) = R(i) + D(i) (2.17)

Therefore, the smaller the value of F (i) of an individual, the fitter it is, and the
more chances it will have to propagate its characteristics. After this step of computing the
fitness of all solutions, the non-dominated individuals are copied to the next generation,
and if the number exceeds the maximum population size, a truncation operator is necessary
to remove the unwanted individuals (CHOŁODOWICZ; ORŁOWSKI, 2017).

The evolutionary algorithm SPEA2 also uses the genetic operators of crossover
and mutation, with their respective defined probabilities. The SPEA2 pseudo-code is
represented in the algorithm 4.

Algorithm 4 SPEA2 - Minimisation Problem
1: function SPEA2()
2: Initialise parameters
3: Initialise population Pt

4: Create empty archive At

5: while stop criteria not satisfied do
6: Evaluate Pt ∪ At

7: Compute F (i) of each individual in Pt ∪ At

8: At ← Non-dominated solutions
9: if size of At is bigger than NA then

10: Use truncation operator to remove elements from At

11: end if
12: Apply crossover and mutation operators
13: end while
14: return A
15: end function
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2.5.4 Genetic Algorithm Operations

In Section 2.5 a set of evolutionary algorithms was described. All of them makes
use of genetic operators in their respective optimisation processes. Such operators play
fundamental roles for the success of each of them. Because of this, below is described
which and how they were used in this work.

In Genetic Algorithms, only two kinds of operations are used, the genetic operation
and the evolution operation. The genetic operations are crossover and mutation whereas
the evolution operation is the selection (SILVA, 1999). It is worth noting that the MOEAs
usually uses a binary representation of the individuals or chromosomes. However, real
value individuals can, and were used in this work since they provide easier understanding
and more freedom to use different genetic operators (KORA; YADLAPALLI, 2017).

2.5.4.1 Crossover Operation

Due to the choice of using a real representation for the solutions, the arithmetic
crossover operator was adopted. In an arithmetic crossover, two chromosomes or individuals
are selected for crossover x(t) and y(t), and by means of a linear combination of these
chromosomes, two offspring are produced, O1(t) e O2(t). This linear combination is made
as follows (CHAUHAN; SINGH; AGGARWAL, 2021):

O1(t) = rx(t) + (1− r)y(t) (2.18)

O2(t) = ry(t) + (1− r)x(t) (2.19)

where r is a random parameter in the range [0,1].

The performance or fitness of the offspring depends largely on the performance of
the crossover operator used. A crossover rate is defined as the ratio between the number of
offspring produced in each generation and the population size. Then, in Genetic Algorithms,
this ratio, also known as crossover probability pc, controls the number of chromosomes
selected to undergo the crossover operation (SILVA, 1999).

2.5.4.2 Mutation Operation

The non-uniform mutation operator (NEUBAUER, 1997) was adopted and is used
to change the individuals of a population at a probability pm. When applied, an individual
x′(t) = (x′

1(t), ..., x′
n(t)) is modified according to the Equation 2.20.

x′
i(t) = xi(t) + δi (2.20)
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where δi is a sensitivity parameter associated with the limit of the search space for each
variable. This operator is also very important for providing diversity to the solutions,
helping the algorithm explore new regions in the search space.

2.5.4.3 Selection Operation

The selection operation is the process of selecting individuals for generating offspring.
In this work, for both EAs (NSGA-II and SPEA2), the usual binary tournament selection
operator was used and involves running two tournaments among four individuals chosen
at random from the population. The winner of each tournament (the one with the best
fitness) is selected for crossover (COELLO et al., 2007b).

For the NSGA-II algorithm, the evaluation is carried out by firstly considering the
front to which the solution belongs, and then its crowding distance value. For SPEA2, the
best individual is the one with the highest value of F (i).

2.6 Quality Indicators
Because multi-objective algorithms have a set of solutions instead of a single one,

direct comparisons between algorithms results cannot be directly performed.

Figure 2.7 illustrates this impasse by comparing the hypothetical results of two
algorithms, A and B. For a given minimisation problem, in the first situation, Figure 2.7a,
the solutions of algorithm A are better than those of B, since the frontier defined by A

dominates all solutions of B, but it is not possible to say how much A is better than B. In
the second case, Figure 2.7b, the results of the two algorithms are complementary, because
some solutions of A dominate solutions of B, and some solutions of B dominate solutions
of A. Determining which is the best algorithm requires understanding the characteristics
of the solutions that can best be applied to the evaluated problem (SILVA et al., 2014).

To allow a better comparison between multi-objective algorithms, several quality
indicators have been proposed in the literature. In this section, some of the main metrics
are presented and will be used later in Chapter 5.

2.6.1 Hypervolume (HV)

The Hypervolume was proposed by Zitzler and Thiele (1999) and it is the mostly
used indicator to evaluate sets of non-dominated solutions (FEI et al., 2016). This indicator
computes the area (or volume when more than two objectives are employed) of the region
covered by the estimated Pareto Front, PF , and a reference point (usually, the nadir
point). Formally, this indicator is described as the Lebesgue measure Λ of the union of
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Figure 2.7 – Comparison of two Pareto Fronts for a two-objective function minimisation problem.

(a) A dominates B completely. (b) A and B are complementary.

Reference: author

rectangles (or cubes, in m > 2) formed by consecutive points of the Pareto Front and can
be generalized by the Equation 2.21.

HV (PF ) = Λ
({⋃

i

ai|xi ∈ PFP

})
(2.21)

where ai is the area occupied by the solution xi and PFP represents the Pareto Front of
the population P .

Figure 2.8 – Hypervolume.

Reference: author

Therefore, this metric reflects Pareto dominance, so that when one set dominates
another, this will be reflected in the hypervolume. Assuming the minimisation of a MOP,
higher hypervolumes are preferred to lower ones when the reference point is the nadir
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point. In Figure 2.8, the blue region represents the hypervolume measure for a set of
arbitrary solutions.

2.6.2 Spread (S)

The Spread (ZITZLER, 1999), or ∆ metric, evaluates the distribution of non-
dominated solutions over the Pareto Front (MAASHI, 2014). This indicator is calculated
through the relative distance between consecutive solutions and is given by the equation
2.22.

S = 1
NP F − 1

NP F∑
i=1

(L− Li)2 (2.22)

where Li = minj(
m∑

k=1
|f i

k(x) − f j
k(x)|), for i, j = 1, ..., NP F ; L represents the distance

between adjacent solutions and NP F is the number of non-dominated solutions on the
evaluated front.

This metric allows calculating the spacing uniformity of the solutions in the object
space. The closer to zero, the better distributed the solutions on the Pareto Front will be.
At S = 0, equidistant solutions are obtained.

For problems in which the Pareto Front has discontinuities, this metric can be
misinterpreted since there is an increase in its value. Therefore, it is important to combine
results with other indicators to perform a better analysis (SILVA et al., 2014).

2.6.3 Ratio of Non-dominated Individuals (RNI)

The Ratio of Non-dominated Individuals (TAN; LEE; KHOR, 2002) evaluates the
percentage of non-dominated solutions ND(P ) in the population P , according to Equation
2.23. Higher RNI values are better than lower ones.

RNI = ND(P )
NP

(2.23)

where NP represents the population size.

2.6.4 Discussion

When evaluating the performance of multi-objective algorithms, there are two main
goals to pursue (ELARBI et al., 2017):

• Convergence: closeness of the provided non-dominated solution set to the Pareto
optimal front;
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• Divergence: diversity of the obtained solution set (with a good distribution) along
the Pareto optimal front.

Table 2.1 summarise the quality indicators presented. The mentioned indicators
were chosen because they have different characteristics and, when use together can provide
enough information for a good performance comparison of multi-objective algorithms.

Table 2.1 – Quality indicators comparison.

Quality Indicator Convergence Divergence Maximising/Minimising
Hypervolume X maximising

Spread X minimising
RNI X maximising

Reference: author

2.7 Conclusion
Computational intelligence methods have proven to be effective in finding optimal

solutions for a wide range of problems in various application areas. In this chapter, the
fundamental concepts related to optimisation, metaheuristics, single and multi-objective
algorithms, evolutionary algorithms, and quality indicators were presented. All of them will
be used later to the tuning of the PI controllers used in the position and speed-controlled
electric drive system.
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CHAPTER 3

The Problem Characterisation

In this chapter, explanations are given on the speed and position controller tuning
for a separately excited DC motor drive system by using the algorithms previously presented
in Chapter 2.

Section 3.1 gives a brief introduction to the controller tuning problem, citing some
related works, as well as the classical methodology used to solve this kind of problem.
Sections 3.2 and 3.3 give a description of the system, where the DC motor is modelled in
terms of block diagram, and the speed and position control problems are formulated. In
Section 3.4, a set of objective functions, necessary to obtain a desired behaviour of the
system, are presented. Section 3.5 explores the concept of the decision-making process,
necessary for choosing solutions for multi-objective problems. Section 3.6 presents how
the algorithms are applied to the controller tuning problem. At last, in Section 3.7, the
statistical analysis used to compare the algorithm’s performance is explained.

3.1 The General Controller Tuning Problem
Among the intelligent techniques, metaheuristics have been widely used to solve

many real-world optimisation problems, as observed in Jovic et al. (2018), Deveci and
Demirel (2018). The interest is due to their relatively simple operation, capability to deal
with very complex problems at a reasonable computational cost, and their applicability
within different contexts (TALBI, 2009). These characteristics make metaheuristics good
alternatives to be applied in problems involving controller tuning in closed loop control
systems.
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The main objective of the controllers is to guarantee the stability of a dynamic
system response and, to achieve it, a set of parameters must be considered for the system’s
stabilisation. These parameters can be adjusted to comply with different performance
conditions such as acceleration, settling time (LEQUIN; GEVERS; TRIEST, 1999) and
load disturbances (SILVA, 1999). Smoothing the transient is usually an issue to be targeted
in dynamic systems stability (RIBEIRO; REYNOSO-MEZA, 2018).

Figure 3.1 illustrates how different parameter sets, denoted by x0, x1, and x2, used
in the same controller structure, affect the stabilisation towards a reference value of a
dynamic system. The same figure shows a general process of tuning controllers by using an
optimisation algorithm. The algorithm is responsible for defining the controllers’ setting of
a feedback system, to accomplish system behaviour that minimises or maximises one or
more objective functions. In a single-objective scenario, the algorithm’s output consists
of the final control parameters. However, in the case of a Multi-Objective Problem, the
algorithm’s output is a Pareto Front. A decision-making process is then carried out using
the Pareto Front, leading to the final controller parameters. Each step will be covered in
detail in the next sections.

Figure 3.1 – General multi-objective metaheuristic optimisation controller tuning process.

Reference: adapted from Rodríguez-Molina et al. (2020)

Known as the controller tuning, the correct setting of the controller parameters is
usually a difficult task. The general controller tuning problem refers to the search for a set
of controller parameters that stabilizes the dynamic system response under a given set of
performance criteria and, at the same time, guarantees a desired behaviour (CARRASCO
et al., 2020).
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3.2 DC Motor Modelling
The DC motors present excellent functioning characteristics, i.e., large torque per

unit of current for low speeds and great speed controllability (REIS et al., 2014).

Between the end of the 19th century and the beginning of the 20th century, the
earliest power systems were in Direct Current – DC. However, gradually the AC power
systems were gradually taking over the DC one. Despite this fact, DC motors continued to
be a significant fraction of the machinery purchased for industrial application (CHAPMAN,
2013).

Today DC motors are still in use. For example, DC motors are used to power
ancillaries in vehicles and can be found in household applications and electric tools. Another
application for DC motors was a situation in which variable speed is needed. Before the
widespread use of power electronic rectifier-inverters, DC motors were unbeatable in speed-
controlled motor drive systems. Even if no DC power source were available, solid-state
rectifier and chopper circuits were used to create the necessary DC power, and DC motors
were used to provide the desired speed control (CHAPMAN, 2013). Currently, inverter
fed induction motor drive represent a good choice over DC motors for most speed control
applications. However, there are still applications where DC motors are preferred, such as:
i) Textile machines; ii) Piston pumps; iii) Presses and iv) Vehicle applications (RONCHI,
2015).

The equivalent circuit of a separately excited DC motor is shown in Figure 3.2. In
this configuration, the field is supplied from a separate constant-voltage power supply.

Figure 3.2 – Equivalent circuit of a separately excited DC motor.

Reference: author

Where:

• Va - Armature voltage (V);
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• Ia - Armature current (A);

• Ra - Armature resistance (Ω);

• La - Armature inductance (H);

• e - Electromotive force - emf (V);

• ωm - Angular speed (rad/s);

• Te - Electromagnetic torque (N·m).

By applying Kirchoff’s voltage law to the circuit shown in Figure 3.2, is obtained
Equation 3.1.

Va = e + RaIa + La
dIa

dt
(3.1)

The electromotive force is a function of the field flux, ϕf , the motor angular speed,
ωm, and a constant, K, which is related to the machine design:

e = Kϕfωm (3.2)

For the DC motor with constant field flux, Equation 3.2 can be written as:

e = Kbωm (3.3)

where Kb is the emf constant in (V/rad/s).

The power balance equation states that:

VaIa = eIa + RaI2
a (3.4)

From Equation 3.4, one can clearly see that, VaIa, represents the input power and,
RaI2

a , the armature loss. Then, the remaining term, eIa, is the electrical air gap power
which is transformed into mechanical one.

In terms of angular speed, ωm, and electromagnetic torque, Te, the mechanical
power can be given as:

Pa = ωmTe = eIa (3.5)

By substituting Equation 3.3 into 3.5, the electromagnetic torque can be found as:

Te = KbIa (3.6)
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One can recognise that the emf constant, Kb, is the same one for the torque.
However, in Equation 3.6 it is measured in (N·m).

The load torque is usually modelled as a moment of inertia, J , and a viscous friction
coefficient, B. Then, from the electromechanical modelling, the acceleration torque can be
given as:

J
dωm

dt
+ Bωm = Te − TL = Ta (3.7)

Where:

• J - Inertia (Kg·m2);

• B - Viscous friction coefficient (N·m/rad/s);

• TL - Load torque (N·m);

• Ta - Acceleration torque (N·m);

By applying Laplace Transform to 3.1 and 3.7, one obtains:

Ia(s) = Va −Kbωm(s)
Las + Ra

(3.8)

ωm(s) = KbIa(s)− TL

Js + B
(3.9)

Equations 3.8 and 3.9 can be represented as the block diagrams given in Figure 3.3.

Figure 3.3 – Block diagram of the separately excited DC motor.

Reference: author

Two transfer functions are obtained from the block diagram: i) taking the armature
voltage as input and angular speed as the output and ii) taking load torque as input and
angular speed as output:



Chapter 3. The Problem Characterisation 55

ωm(s)
Va(s) = Kb

JLas2 + (BLa + JRa)s + (BRa + K2
b ) = GωV (s) (3.10)

ωm(s)
TL(s) = −(Las + Ra)

JLas2 + (BLa + JRa)s + (BRa + K2
b ) = GωL(s) (3.11)

The speed response, taking the two simultaneous inputs, armature voltage and
load torque, is:

ωm(s) = GωV (s)Va(s) + GωL(s)TL(s) (3.12)

The position response is obtained from the integration of the speed as:

θ(s) = ω(s)
s

(3.13)

The inverse Laplace transform of 3.12 yields to the time speed response of the
DC motor due to the armature voltage and load torque inputs, which is seen as a load
disturbance. From 3.10 and 3.11, one can see that the separately excited DC motor
represents a second order linear system.

3.3 The Closed Loop Speed and Position Control
The position control of a DC motor drive is carried out by using three control

loops, as shown in Figure 3.4. The inner one represents the armature current control loop,
the one in the middle, the speed, and the outer one, the position control loop. To control
the armature current, the actual value, Ia, is compared to a reference one, Iref , generating
an error, which is taken into the PI controller. Therefore, the output of the PI current
controller represents armature voltage, Va, to the DC motor. The speed control is carried
out by comparing the actual speed, ωm, to a reference value, ωref , generating a speed error
which is taken into the PI speed controller. The output of the speed controller represents
reference armature current to the current control loop. Within the position control loop,
the current position, θ, is compared to the reference value, θref , generating a position
error which is taken into the PI position controller. The output of the position controller
represents reference speed value to the speed control loop.
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Figure 3.4 – Position control DC motor drive block diagram.

Reference: author

For speed control, the strategy is very similar to that required for position control,
with the difference that the position control loop is eliminated and the system input is a
reference speed, as illustrated in Figure 3.5. It is important to highlight that in this case,
there is one less controller to be adjusted, resulting in a problem with a smaller number of
variables.

Figure 3.5 – Speed control DC motor drive block diagram.

Reference: author

In this work, the armature current and voltage are limited by using a saturation
block placed at the output of PI controllers. It means that the rated armature current
demand and voltage will not exceed the rated values at any time. Then, it is possible to
assign high gains values to the PI controllers, allowing the algorithm to look for the best
tuning within a larger searching space. It is also important to highlight that high gain
values can lead to large armature current demand to the DC motor and, therefore, large
armature voltage applied to the motor. However, due to the limitations imposed to the
controller’s output, when the value of a variable reaches the maximum (or minimum) limit,
signal saturation occurs. This causes the feedback loop to be ruptured, as the actuator
will remain at its maximum (or minimum) limit regardless of the process output. Then,
if the integral action of the controller is active, as in the case of a PI controller, the
error will continue to be integrated and the integral term tends to become very large.
Because of this, a problem known as integrator windup appears in almost every real system
(SILVA; FLESCH; NORMEY-RICO, 2018), resulting in large overshoot and long settling
times. To overcome the windup problem, many researchers have suggested anti-windup
circuits to be used together with the PI controller. Although some authors have given
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guidelines for anti-windup design (VRANCIC; PENG, 1996), tuning the controller for
optimal performance in a non-linear system together with the anti-windup circuit may
become a difficult task (SILVA; ACARNLEY; FINCH, 2001).

One of the basic anti-windup circuits as proposed in Silva, Acarnley and Finch
(2001) uses a dead zone block to limit the integrator’s action, as shown in Figure 3.6.

Figure 3.6 – PI controller with an anti-windup circuit based on the use of a dead zone block.

Reference: (SILVA; ACARNLEY; FINCH, 2001)

With such configuration, the functioning of the circuit is as follows:

1. When the integrator’s output, which is the input of the dead zone block, is greater
than the positive limit, the output of the dead-zone block becomes output = input –
positive limit.

2. When the output of the integrator is smaller than negative limit, the output of the
dead-zone becomes output = input – negative limit.

3. For any input of the dead zone in the interval [negative limit, positive limit], the
output of the dead-zone block is zero.

Then, within the context of this work, the optimisation algorithms must find the
best tuning of the PI controllers together with the dead zone window.

3.4 Objective Functions
Low cost, fast response, robustness, low sensitivity, small error rates, high accuracy,

and efficient energy usage are examples of common requirements for closed-loop control
systems, which may conflict with each other. These features strongly depend on the settling
of the controller parameters (RODRÍGUEZ-MOLINA et al., 2020).
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Depending on the closed-loop control system representation, different perfor-
mance indexes are chosen in the reviewed works (RODRÍGUEZ-MOLINA et al., 2020;
ZOLFAGHARIAN et al., 2013; EUZÉBIO et al., 2015). For a time-domain representation,
some indices have been chosen to be used in this work, and are listed below:

• Integral Absolute Error (IAE) - Determines how far is the system response from the
reference signal. It’s calculated according to Equation 3.14.

IAE =
∫ T

0
|e(t)|dt (3.14)

where T represents the total simulation time and e(t) is the error between the system
response signal and its reference value at the time t. This indicator calculates the
area formed between the two curves;

• Steady-state error (Ess) - Is the deviation of the output of the controlled variable
from its desired response at steady state;

• Rise Time (Tr) - Defined as the time required for the response to rise from 10% to
90% of its final value;

• Settling Time (Ts) - It is the time required for the response curve to reach and stay
within a range of certain percentage (defined in this work at 2%) of the final value;

• Overshoot (OS) - It is a relation between the maximum value of the system response
and the steady state response.

3.5 Decision Making for Multi-Objective Problems
Within the context of multi-objectives controller tuning problems, there is usually

a moment when decision must be made, and they are related to the selection of the best
trade-off towards finding the best solutions among the universe of possible ones.

There are two principal ways to deal with these preferences (COELLO et al.,
2007b):

• A priori: The decision making is performed before searching for solutions. Using
well-established preferences about the objectives is useful to define an aggregate
objective function that indicates the pertinence degree of solutions. In some cases,
the MOP can be transformed into a single-objective problem to which global solution
includes the desired trade-off;

• A posteriori: The optimisation process is executed first and, afterwards, a decision
method is applied. Once the Pareto Front is obtained, the decision-maker can select
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the best trade-off based on preferences. Currently, there is a vast diversity of a
posteriori decision-makers among which those based on the position of solutions
stands out, on the closeness to a well-established reference point, or on the value of
a utility function that ranks the preference of each objective.

A priori techniques are rarely used in the literature since they are not suitable
for general use, requiring the decision maker to specify his preferences in advance (PUR-
SHOUSE et al., 2014). The associated difficulty resides in the fact that the decision-maker
does not always know in advance what is possible to achieve in the problem, how realistic
his expectations are or the consequences arising from the relationship between the objec-
tives (MIETTINEN; HAKANEN; PODKOPAEV, 2016). On the other hand, when carried
out a posteriori, it is possible to visualise the Pareto Front, making the decision-making
process more flexible as it is possible to clearly know what are the non-dominated solutions.

In this work, a posteriori decision-making process was adopted, which enables
the generation of multiple possible solutions that highlight the conflict of interest. This
approach allows for a comprehensive analysis of the problem and consideration of various
factors in the decision-making process.

Since the algorithm gives a set of non-dominated solutions, the Weighted Sum
Model (WSM), from decision theory, is used to evaluate the number of possible solutions
in terms of a decision-making criteria. It means that, for a problem with NP possible
solutions, a vector, w, paring a different degree of relevance to each objective can be
defined and, for each possible solution, a score can be computed such as:

AW SM−SCORE
i =

m∑
j=1

wjaij, i = 1, ..., n (3.15)

where wj is the weight associated to the objective fj and aij is the performance of the
solution Ai when evaluated according to the objective fj . For a minimisation problem, the
best solution is the one with the lowest score.

Through WSM, it is possible to establish a degree of importance for each of the
objectives of the optimisation problem. Therefore, different non-dominated solutions for
the speed or position-controlled DC motor drive can be obtained.

3.6 Computational Intelligence Applied to Controller Tuning
In this work, several optimisation algorithms are used to find the optimal tuning

of PI controllers for the speed and position control of the DC motor drive as shown in
Figures 3.4 and 3.5, together with the anti-windup circuits of the armature current and
speed closed control loop. Each one of the dead-zone blocks in the anti-windup circuits
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has an upper and a lower limit window. The absolute value was chosen to be the same
then, a single value is necessary for each dead-zone block. Therefore, for position control,
each individual, xp

i , is an eight-column size vector. The first six columns represent the
proportional and integral gains of the PI controllers whereas the two remaining ones, the
7th and 8th, represent the dead-zone block window limit:

xp
i = (kpp, kip, kpω, kiω, kpi, kii, dzω, dzi) (3.16)

Where:

• kpp - Proportional gain of the PI position controller (1/s);

• kip - Integral gain of the PI position controller (1/s2);

• kpω - Proportional gain of the PI speed controller (A·s/rad);

• kiω - Integral gain of the PI speed controller (A/rad);

• kpi - Proportional gain of the PI current controller (V/A);

• kii - Integral gain of the PI current controller (V/A·s);

• dzω - Limit of the dead-zone window of the PI speed controller (A);

• dzi - Limit of the dead-zone window of the PI current controller (V).

Figure 3.7 – Dead-zone block showing the dead-zone window (Min - Max).

Reference: (SILVA, 1999)

For speed control, the difference is that there is no position control loop, so the
individual xω

i is represented as follows:

xω
i = (kpω, kiω, kpi, kii, dzω, dzi) (3.17)

For a more comprehensive study, encompassing different types of configurations,
algorithms and objectives, it was decided to formulate the problems in two different ways:
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• Single-objective - This approach considers the minimisation of only one objective
which uses the Integral of the Absolute Error (IAE) as the evaluation function. For
the case of speed control, the algorithm must find the set of controller’s gains that
result in the lowest IAE value. The same goes for position control.

Therefore, the PSO and SA algorithms were used to find a unique optimal solution
that satisfied Equation 3.18. Through the value of IAE it is also possible to establish
a direct comparison between the performance of the both algorithms.

x∗ = min{IAE(x1), IAE(x2), ..., IAE(xNP
)} (3.18)

• Multi-objective - For this approach, four important classical control theory parameters
should be considered: Ess, Tr, Ts and OS. However, for such number of objectives to
be targeted, it would not be possible to visualise the Pareto Front. Because of this, it
was more convenient to form a vector of objective functions with only three of these
objectives, as generally formulated in Equation 3.19. Then, a series of test results
can be found for different combinations of objective functions to be targeted. The
combination that presents characteristics with a higher level of conflict and diversity
of solutions will be the chosen for simulations later, in Chapter 5.

min F(x) = (f1(x), f2(x), f3(x)) (3.19)

Once the objectives have been defined, NSGA-II and SPEA2 algorithms can be used
to find the set of non-dominated solutions that best satisfy the required specifications.
To evaluate and compare the performance of multi-objective algorithms, the set of
quality indicators already mentioned is used: Hypervolume (HV), Spread (S) and
Ratio of non-dominated individuals (RNI). To visualise the possible different types
of speed and position responses resulted from the setting of the PI controllers with
the objectives shown at each Pareto Front, the WSM a posteriori will be used.

3.7 Statistical Analysis
A very important aspect in the study of computational intelligence algorithms is

to evaluate their performance to determine if there is a significant difference between the
investigated approaches (CARRASCO et al., 2020).

The results of a metaheuristic, even when applied to the same problem, may vary
each time the algorithm is run. This behaviour is due to the stochastic elements inherently
present in the operation. For this reason, it is common for the results to be provided taking
into account the mean and standard deviation. Consequently, appropriate statistical tests
are required to compare these results.
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Firstly, it is necessary to define some concepts such as the Hypothesis Test, which
is a procedure used to accept or reject a statistical hypothesis based on samples, classified
as:

• Parametric test: have a normal sample data distribution;

• Non-parametric test: independent of sample data distribution, thus being a more
generic and robust test.

For these procedures, some other concepts can be highlighted (MELO, 2009):

• Types of Hypothesis: H0, called null hypothesis, designates the statistical hypothesis
to be tested (e.g.: the means of two samples are equal), and by H1 the alternative
hypothesis (e.g.: the means of two samples are different). The null hypothesis expresses
an equality, while the alternative hypothesis is given by an inequality;

• Types of errors in hypothesis tests:

1. Type I error: rejection of a hypothesis when it is true;

2. Type II error: acceptance of a hypothesis when it is false.

The probabilities of type I and II errors are primarily designated by the probability
α, also known as the significance level of the test. As was said initially, the purpose of
hypothesis testing is to determine whether the hypothesis null may or may not be accepted.
This decision is taken considering a rejection region. If the observed value of the statistic
belongs to the rejection region, H0 must be rejected and it is said that there is not enough
information to accept the null hypothesis; otherwise H0 should not be rejected and it is
said that there is not enough information to reject the null hypothesis (MELO, 2009).

In general, small values are assigned to α, the most common being α = 5%. The
hypothesis H0 is formulated with the aim of rejecting it. Hence, the null hypothesis name.
The significance test does not eliminate the probability of error. However, it provides
the probability value, called p-value (SCHERVISH, 1996) that allows you to decide, with
respect to α, whether there is enough evidence to reject H0 (if p-value< α) (MELO, 2009).

There are multiple types of statistical tests, and the choice of the most suitable
test for a given situation depends on some factors. To make an accurate selection, the
following steps should be followed: i) determine whether there are two or more groups
being compared, and ii) assess the normality of the sample data.

The first class of frequency-based tests that can be used to compare algorithm
performance are parametric tests; which assume that the sample data comes from a normal
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distribution, and that it can be described only by mean and standard deviation values
(CARRASCO et al., 2020). The two main parametric tests are:

• t-test: This classic test is used to compare two samples. To perform this test, the
required input is a set of observations obtained from different runs of the algorithms
for a given problem;

• Analysis of Variance (ANOVA): Used to compare k different samples (k>2). This test
is necessary since repeating the t-test for every pair of algorithms would increment
the type I error (CASTILLO-VALDIVIESO et al., 2002).

To determine whether a sample data follows a normal distribution, the Shapiro-Wilk
test can be employed (SHAPIRO; WILK, 1965). The test yields a p-value, and if this value
is greater than α, it can be concluded that the sample follows a normal distribution, and
parametric tests t and ANOVA can be employed. However, if the p-value is less than α, a
non-parametric test should be utilised:

• Mann-Whitney U test: is a non-parametric alternative to the two-sample t-test
and considers the magnitude of the difference between each compared pair. It is
valid for data from any distribution and is less sensitive to outliers than the t-test
(WILCOXON, 1992);

• Friedman test: non-parametric test equivalent to the ANOVA test, which seeks to
compare more than two groups (FRIEDMAN, 1937).

It is important to note that when comparing multiple groups, the result of a
statistical test only indicates the presence of a significant difference between at least two
of them, without identifying which ones. Therefore, it is essential to conduct a post-hoc
test for multiple comparisons. For ANOVA, the Tukey test can be used, while for the
Friedman test, the Durbin-Conover test is recommended (CARRASCO et al., 2020).

For all tests, parametric and non-parametric, the hypotheses are as follows:

• H0: Null hypothesis that posits that the performances of the algorithms are equivalent;

• H1: Alternative hypothesis that suggests that the algorithms do not have equivalent
performance.

This work involves two types of comparisons: (i) evaluating the performance of
an algorithm by varying some of its significant parameters, and (ii) comparing different
algorithms applied to the same problem. These comparisons will be conducted in the
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following chapters using the statistical tests discussed earlier. Figure 3.8 depicts a step-by-
step process for selecting the most appropriate test for each situation that arises in this
study.

Figure 3.8 – Frequentist tests

Reference: author

All the necessary tests will be performed using MATLAB R2022a.

3.8 Conclusion
Throughout this chapter, the controller tuning problem for speed and position

control of a DC motor drive was characterised. Since it is inherently a non-linear problem
with several parameters to be adjusted at the same time, within a very large search space,
it represents a difficult task. Due to these characteristics, it is very challenging from the
point of view of an optimisation problem. Because of this, the controller tuning problem
was chosen to be addressed where the optimisation algorithms will be used with different
parameter settings, which plays an important role on their performance. Furthermore,
comparisons will be made to find out their relative strengths and/or weakness.
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CHAPTER 4

Results: Single-objective Formulation

This chapter describes the investigations carried out concerning the single-objective
formulation of the controller tuning problem. The description of the parameters used in
the configuration of the test problems is present in Section 4.1. Section 4.2 presents the
results regarding the speed control of a DC motor drive, while Section 4.3 is associated
with position control.

4.1 Parameters Set up
To start the optimisation process, some parameters must be set up. The DC motor

parameters, as obtained from KRİSHNAN (2001), are displayed in Table 4.1.

Table 4.1 – DC Motor Parameters.

Symbol Parameter Value
Va Armature Voltage 220 (V)
Ra Armature Resistance 0.5 (Ω)
La Armature inductance 3 (mH)
J Inertia 0.0167 (Kg·m2)
B Viscous coefficient 0.01 (N ·m/rad/s)
Kb Emf constant 0.8 (V/rad/s)
Kt Torque constant 0.8 (N·m/A)

Reference: adapted from KRİSHNAN (2001)

In this work, the maximum Iref and Vref were limited to 20 (A) and 220 (V)
respectively through a saturator block. The maximum step input reference speed and
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position was set up as 100 units with 5 (N·m) constant load torque. The simulation time
was set to 5 (s).

The range of the proportional and integral gains of all the PI controllers were set to
vary from 0 to 20 units. The dead-zone window for the anti-windup circuit of the PI speed
regulator was set to vary from 0 to 20 (A). It means that, the dead-zone window ranges
from -20 to 20 (A). The dead-zone window of the PI current controller was set to range
from 0 to 220 (V), what means that the dead-zone window ranges from -220 to 220 (V).
The limits imposed are large enough to cause big overshoots and long settling times. This
makes the search space very large and the task for the algorithms more difficult. Table 4.2
presents the limits of the search space.

Table 4.2 – Search space.

Variable Range Unit
kpp 0-20 (1/s)
kip 0-20 (1/s2)
kpω 0-20 (A·s/rad)
kiω 0-20 (A/rad)
kpi 0-20 (V/A)
kii 0-20 (V/A·s)
dzω 0-20 (A)
dzi 0-220 (V)

Reference: author

The DC motor drive was developed in the SIMULINK environment whereas the
PSO and SA algorithms were run in MATLAB. The computer used to run the algorithm
was an Intel Core i7-7500U 7th Gen with 256 (GB) SSD, 8 (GB) RAM Memory and
GeForce 920MX Dedicated Graphics Card.

4.2 Case Study I: Speed Control

4.2.1 PSO

As already mentioned throughout this work, most algorithms have some parameters
that may need to be carefully defined for the algorithm to achieve better performance.
Maximising the performance of these algorithms may not be a simple task since the
algorithm’s parameter settings can have several different possible configurations. (HUTTER
et al., 2014). Despite there being a couple of different parameter suggestions available in
the literature, they are generally determined for specific problems or application contexts.
Therefore, it may happen that, when facing a particular problem, an unusual configuration
of algorithm parameters presents a superior performance than the general and typical one
as suggested in the literature (LÓPEZ-IBÁÑEZ et al., 2016).
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There are several publications related to this area known as automatic algorithm
configuration (SOUZA, 2022), in which methods are proposed for algorithm set up. It
is not the focus of this work to carry out a detailed study about the parameters of the
algorithms used here, but neglecting any type of adjustment could affect their performance
and also the comparisons made between the algorithms. In this way, several variations of
the main parameters of each algorithm were tested, aiming to identify the impact of these
parameters on the convergence of the algorithms when applied to the tuning of the PI
speed and position controllers of a DC motor drive.

For the PSO algorithm, there are three main parameters associated with its
performance, they are: i) population size (NP ); ii) acceleration coefficients (c1 and c2) and
iii) inertia weight (w(t)). The importance of each parameter was discussed in Chapter 2.
Table 4.3 presents the different values and settings assigned to each of these parameters.

Table 4.3 – PSO parameters used.

Parameters Values
Population size {20, 50, 100}

Acceleration coefficients {c1 = c2, c1 > c2, c1 < c2}
Inertia weight {Linear decreasing, Random adjustments}

Reference: author

Three different population sizes (20, 50 and 100 individuals) were selected in order
to identify how much this quantity influences the convergence of the algorithm. The
values were chosen based on Piotrowski, Napiorkowski and Piotrowska (2020), Santos et
al. (2021b) combined with the designer’s experience about the need for each problem.

Cognitive and social coefficients, also known as acceleration coefficients, were tested
in three different configurations. In the first one, the coefficients had the same value,
c1 = c2 = 1.49445. In the second configuration, the cognitive component had a higher
value than the social one, with c1 = 2.05 and c2 = 0.5. Finally, a more relevant degree of
importance was given to the social component than to the cognitive one, c2 = 2.05 and
c1 = 0.5. The settings, as well as the values used, were obtained from Silva et al. (2014).

Regarding the inertia weight, two popular approaches present in the literature were
considered: i) random adjustment and ii) linear decreasing, as presented in Equations 2.4
and 2.5. It was suggested by Ratnaweera (2002), in the case of linear decreasing method,
that the inertia weight starts with a high value (usually 0.9) and reduces to 0.4. However,
the value of w(t) = 0.4 contradicts Equation 2.3, given the values of c1 and c2 chosen
above. In this way, it was chosen in this work so that the linear variation of the inertia
weight occurs between 0.9 and 0.5.

In summary, three population sizes, three relations for the acceleration coefficients
and two approaches for variation for the inertia weight have been chosen. As the mentioned
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parameters are simultaneously present in the algorithm, there are 18 possible different
combinations to configure the PSO. All these possibilities are investigated to evaluate
the impact of the parameters on the convergence of the algorithm and also on how they
influence each other. Due to the nature of metaheuristics, all configurations were repeated
20 times, so that the random aspect cannot directly influence the results of performance
comparisons, thus, providing greater reliability in the use of statistical tests.

The utilisation of optimisation algorithms has a well-defined goal, which is to find
the global minimum. However, it is often unclear whether this objective has been achieved,
especially when addressing real-world problems for which the global optimum is not known.
Therefore, it is not an easy task to decide when the execution of an algorithm should be
terminated. The scientific literature on metaheuristics lacks a definitive consensus regarding
stop criteria. Nevertheless, the most common approach involves setting a maximum number
of fitness evaluations, which is often tailored to the problem and frequently determined
through the experience of the researcher (LIMA, 2017; CHEN et al., 2022; HU et al.,
2022).

In this work, to establish the stop criteria, an exhaustive trial using the Particle
Swarm Optimisation (PSO) algorithm was performed. For the speed control problem, a
population of 100 individuals was employed, and a total of 6000 solutions were evaluated.
The IAE objective function evaluation graph was plotted over the iterations, as shown in
Figure 4.1. This figure reveals that only minor improvements occurred after the eighth
iteration (which corresponds to 800 fitness evaluations), which does not justify letting
the algorithm run for a longer time beyond that. Then, a slightly higher stop criteria was
established for the remaining simulations, limiting the number of particle evaluations per
algorithm’s run to 900. Although this value may be considered low when compared to the
search space, it has proven to be satisfactory, enabling the evaluation of the algorithm’s
capacity to find a good solution within a shorter time.

To ensure a fair comparison between different algorithm configurations, the stop
criteria must always be the same. However, it should be noted that when running the
algorithm with varying population sizes but a fixed number of fitness evaluations, each
configuration will require a different number of iterations. A smaller population size, for
instance, will require more iterations, whereas a larger population size will need fewer
iterations to reach the stop criteria. Specifically, a population size of 20 individuals demands
45 iterations to meet the stop criteria, while populations with 50 and 100 individuals
require 18 and 9 iterations, respectively.

Table 4.4 presents the minimisation results obtained by the PSO, with mean and
standard deviation of the IAE for speed control of a separately excited DC motor drive,
considering the different scenarios of mentioned parameters. The average simulation time
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Figure 4.1 – Definition of the stop criteria - Speed control problem.

Reference: author

for each run of the algorithm was 470.5 (s). The value in bold represents the configuration
with the lowest average obtained.

The configuration that presented the lowest average was the one with the smallest
population, cognitive coefficient bigger than the social one, and the linear decreasing
method of the inertia weight (configuration number 4). It is also evident the low standard
deviation and the small difference between the means of all configurations, leads to
conclusion that the stop criteria was appropriate to the problem.

From the results obtained using different PSO configurations, it is possible to
identify direct interactions between the algorithm’s parameters. This helps to establish
relationships between specific settings that lead to greater synergy and more effective
minimisation of the IAE function. In Figure 4.2a the relationship between population size
and acceleration coefficients is shown. Populations with 20 and 50 individuals obtained
better averages when in collaboration with c1 > c2, while the larger population achieved
better results when combined with a higher social coefficient. This behaviour can be
understood as follows: smaller populations occupy smaller regions within the search space,
which implies the need for individuals to assume a greater role, distancing themselves
from the collective to carry out a better exploration. On the contrary, large populations
need less of this individual exploration, as they naturally occupy a larger region in the
search space, meaning that the social coefficient is more important for these groups when
compared to the population of less individuals.
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Table 4.4 – IAE value results for the PSO algorithm to the speed control problem.

Configuration Average (rad) Standard
Deviation (rad)Pop. size A. coefficients Inertia

1 20 c1 = c2 Linear 9.1708 0.0472
2 50 c1 = c2 Linear 9.1768 0.0470
3 100 c1 = c2 Linear 9.1565 0.039
4 20 c1 > c2 Linear 9.1468 0.0342
5 50 c1 > c2 Linear 9.1551 0.0385
6 100 c1 > c2 Linear 9.1709 0.0334
7 20 c1 < c2 Linear 9.1512 0.0485
8 50 c1 < c2 Linear 9.1667 0.046
9 100 c1 < c2 Linear 9.1593 0.0394
10 20 c1 = c2 Random 9.1887 0.0307
11 50 c1 = c2 Random 9.1797 0.0334
12 100 c1 = c2 Random 9.1664 0.0299
13 20 c1 > c2 Random 9.1725 0.0378
14 50 c1 > c2 Random 9.1498 0.0224
15 100 c1 > c2 Random 9.1587 0.0357
16 20 c1 < c2 Random 9.1790 0.0446
17 50 c1 < c2 Random 9.1762 0.0383
18 100 c1 < c2 Random 9.1492 0.0164

Reference: author

Figure 4.2b, relates the size of the population with the type of variation in the
inertia weight. An opposite behaviour of the curves can be observed, with linear variation
being preferable for smaller populations, while a larger population presents advantage
when used together with random adjustment. Especially regarding populations of 50 and
100 individuals, the average difference is minimal, with no real advantage for either side.
Finally, in Figure 4.2c, the interaction between the acceleration coefficients and the types
of inertia weight variation is presented, showing the superiority of linear decreasing in all
cases.



Chapter 4. Results: Single-objective Formulation 71

Figure 4.2 – Interaction between PSO parameters.

(a) Population and acceleration coefficients.

(b) Population and variation of inertia weight.

(c) Acceleration coefficients and variation of inertia weight.

Reference: author
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Regarding the statistical approach, the Shapiro-Wilk test was first performed to
identify whether the results have a normal distribution, making it possible to define the
most appropriate test to compare the results. Therefore, the test was carried out considering
all the results obtained by the PSO algorithm, i.e., referring to the 18 configurations
and considering the 20 repetitions of each one. From these data, a p-value< 0.0001 was
obtained, which means that the null hypothesis must be rejected (H0: data sample has
normal distribution).

The previous result is also evident from the Q-Q plot, Figure 4.3, in which the
normal distribution is compared with the distribution of the data obtained by the algorithm.
As the points follow a non-linear pattern, displaced from the red line, it is suggested that
the data are not distributed with a normal pattern, and therefore, the non-parametric
Friedman test is the most suitable for comparing results.

Figure 4.3 – Q-Q Plot of PSO sample data versus standard normal - Speed control problem.

Reference: author

Through the Friedman test, a p-value=0.3796 was obtained, which means that
there was no statistically meaningful difference between the configurations, thus, it can be
said that the algorithm had the same performance, regardless of the adopted configuration.

Figure 4.4 shows the box plot for the PSO algorithm. Through this diagram it is
possible to observe the numerical variation by means of quartiles. The box plot has lines
that extend vertically, indicating the variability of the upper quartile and the lower one.
Outliers are plotted with a "+" sign, and the red horizontal line represents the median for
each configuration.
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Figure 4.4 – Box plot of PSO algorithm for the tuning of the controllers for the speed-controlled DC motor drive.

Reference: author
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To illustrate part of the behaviour of the PSO, configuration number 4 was selected
and the minimisation process of the IAE function is shown in Figure 4.5.

Figure 4.5 – Average of integral of the absolute speed error along the iterations - PSO Algorithm.

Reference: author

4.2.2 SA

Like what was done for the PSO, different values for important parameters of the
SA algorithm were also explored, in order to analyse its performance.

The main parameters of SA are the initial temperature T0, cooling coefficient α

and number of sub-iterations N . Aiming to obtain the same number of configurations
tested for the PSO, 18, three different values were chosen for the initial temperature, three
values of cooling coefficients and finally, two amounts of sub-iterations. The values that
were adopted are shown in Table 4.5.

Table 4.5 – SA Parameters.

Parameters Values
Initial Temperature (T0) {10, 50, 100}
Cooling coefficient (α) {0.8, 0.9, 0.99}

Number of sub-iterations (N) {1, 4}
Reference: author

The initial temperature in the SA algorithm plays an important role in the search
process since it is associated with the probability that the initial transitions are accepted.
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To find an appropriate value for this parameter, three different ones were considered in
this work: 10, 50 and 100. Regarding the cooling coefficient, it is widely disseminated
in the literature that the value of α should be between 0.8 and 0.99 (DELAHAYE;
CHAIMATANAN; MONGEAU, 2019). Finally, for the number of sub-iterations, which is
associated with the number of solutions evaluated at the same temperature, values of 1
and 4 are proposed in Silva, Santos and Pickert (2020).

The Table 4.6 shows the mean and standard deviation results obtained by SA. 20
repetitions of each configuration were also performed. The average simulation time was
440.3 (s). It is important to note that the stop criteria was again 900 fitness evaluations,
the same established for the PSO.

Table 4.6 – IAE value results for the SA algorithm to the speed control problem.

Configuration Average (rad) Standard
Deviation (rad)T0 α N

1 10 0.8 1 9.3337 0.0705
2 50 0.8 1 9.3570 0.0436
3 100 0.8 1 9.3632 0.0375
4 10 0.9 1 9.3495 0.0601
5 50 0.9 1 9.3361 0.0655
6 100 0.9 1 9.3532 0.0484
7 10 0.99 1 9.3584 0.0628
8 50 0.99 1 9.3269 0.0622
9 100 0.99 1 9.3734 0.0402

10 10 0.8 4 9.3172 0.0294
11 50 0.8 4 9.3687 0.0296
12 100 0.8 4 9.3553 0.0460
13 10 0.9 4 9.3548 0.0712
14 50 0.9 4 9.3472 0.0336
15 100 0.9 4 9.3454 0.0481
16 10 0.99 4 9.3360 0.0603
17 50 0.99 4 9.3447 0.0806
18 100 0.99 4 9.3272 0.0475

Reference: author

The configuration that presented the lowest IAE value was number 10, i.e, the
lowest value of T0, as well as the lowest cooling coefficient and N = 4. Similarly to the
PSO results, the SA algorithm converged to near final values of IAE, regardless of the
parameter configurations used. Additionally, low standard deviations were observed in all
tests, indicating the algorithm’s robustness as well as its ability to find optimal solutions
for the problem.
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Figure 4.6 – Interaction between SA parameters.

(a) Initial temperature and cooling coefficient.

(b) Initial temperature and number of sub-iterations.

(c) Cooling coefficient and number of sub-iterations.

Reference: author
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Figure 4.6 presents the results of interactions between the SA parameters setting.
In Figure 4.6a the relationship that occurred between T0 and α is established. For the
lowest initial temperature, the coefficient that promoted the fastest cooling proved to be
more efficient, while for high temperatures, the slower cooling, obtained lower averages.
Figures 4.6b and 4.6c show the other relationships, showing that higher values of N were
preferable.

The statistical comparison for the SA algorithm starts with the Shapiro-Wilk test,
which provided a p-value = 0.2465, that is, as p-value>α, the null hypothesis H0 must
be accepted, meaning that the results have an approximately normal distribution. This
conclusion is graphically reinforced through Figure 4.7, where the linearity of the points
suggests that the sample data are normally distributed. Thus, the parametric ANOVA
test can be used to continue the comparison of results.

Figure 4.7 – Q-Q Plot of SA sample data versus standard normal - Speed control problem.

Reference: author

It is worth mentioning briefly that the normality (or not) of a sample does not
indicate an advantage or disadvantage in performance for an algorithm. This is just a
characteristic presented by the data, which helps one to chose the most appropriate
statistical test.

ANOVA’s test indicated a p-value = 0.7016, greater than 0.05, which means that
the null hypothesis H0 can be accepted with a confidence level of 95% and that the
performance of all SA configurations was statistically equal. Figure 4.8 contains the box
plot diagram referring to the SA algorithm for speed control.
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Figure 4.8 – Box plot of SA algorithm for the tuning of the controllers for the speed-controlled DC motor drive.

Reference: author
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An interesting aspect about the operation of the SA algorithm is its probabilistic
mechanism that allows the acceptance of worse solutions, which is directly related to the
configuration of the algorithm. Figure 4.9 shows the evolution of the IAE value along the
iterations for three different configurations. During the early stages of the optimisation
process in the three presented examples, the value of the temperature parameter remains
high. This allows the current solution x to accept multiple solutions with IAE evaluations
that are worse than the best one previously found. This is done with the aim of exploring
diverse locations within the search space. As the temperature was reduced, the algorithm
became more rigorous, accepting only better solutions. The difference that can be observed
between the subplots is associated with the temperature of the system, in this way, in the
case of Configuration 10, the system reached a low temperature quickly, while the other
configurations took longer to cool down or even reached the stop criteria with high values
for T .

Figure 4.9 – Comparison of IAE value over the iterations for speed control using three SA algorithm
configurations.

Reference: author



Chapter 4. Results: Single-objective Formulation 80

It should be noted that the SA is not a population-based algorithm and therefore,
at each iteration there is only one fitness evaluation, and thus, to reach the stop criteria,
900 iterations are necessary.

4.2.3 Algorithm Comparisons

Throughout this section, 18 configurations for each algorithm were tested, each
of which was repeated 20 times. Thus, for the single-objective formulation of the speed
control of a DC motor drive system, a total of 720 simulations were performed. It is an
amount large enough for an accurate performance comparison of the algorithms.

To carry out this comparison among the two algorithms, PSO and SA, the statistical
procedures must be done again. Firstly, the normality of the data obtained was verified,
however, the Shapiro-Wilk test has already been performed for both algorithms in the
previous subsections, revealing the absence of normality for PSO. Therefore, the non-
parametric Mann–Whitney U test will be performed directly, since the aim is to compare
only two groups. As in the study of both algorithms there was no statistical difference
between the configurations, to carry out the general comparison between PSO and SA, all
the results obtained were put together.

Table 4.7 presents the result of the test, revealing through a p-value lower than 0.05,
that the algorithms had statistically different performances. This difference is illustrated
through the box plot diagram in Figure 4.10, where it is possible to see the advantage of
PSO over SA.

Table 4.7 – Mann–Whitney U test result - Speed control problem.

Comparison
Algorithm 1 Algorithm 2 p-value

PSO SA <0.0001

Reference: author

Therefore, it can be concluded that the different parameter settings, in none of
the cases, led to performance increase, however, in terms of results, the PSO algorithm
converged to better solutions faster than the SA algorithm. It should be noted that both
algorithms were able to find optimal solutions within the large search space defined for
the problem.
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Figure 4.10 – Box plot comparison of algorithm performance for the speed control problem.

Reference: author

4.2.4 Considerations about the Tuning Results

Regarding to the tuned gains of the controllers, the Tables 4.8 and 4.9 show the
average and standard deviation of the different gain values, together with the windows of
anti-windup circuits found by the algorithms considering the configurations that presented
the lowest average for the integral of the absolute speed error.

Table 4.8 – Results of the tuning of the PI controllers given by the PSO.

Variables Mean Std. Deviation

PI Speed
Controller

kpω 19.5270 1.4375
kiω 16.8027 4.6235
dzω 10.9328 3.5829

PI Currrent
Controller

kpi 18.7591 2.5641
kii 16.8429 0.5259
dzi 87.7725 42.1280

Reference: author

Table 4.9 – Results of the tuning of the PI controllers given by the SA.

Variables Mean Std. Deviation

PI Speed
Controller

kpω 17.8839 1.7884
kiω 15.8954 2.9370
dzω 8.5508 1.0246

PI Currrent
Controller

kpi 19.1205 0.4579
kii 15.4997 1.0817
dzi 107.1778 52.3762

Reference: author
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The results obtained by the algorithms were similar and showed that:

• From the control theory point of view, the proportional gains of the two PI regulators
reached high values, what makes the dynamic responses towards the reference values
faster;

• The integral gains also reached high values, since the outputs of the controllers are
limited and the integrator’s windup is avoided. This was also expected since high
values of the integral gains are important to make the response to reach steady-state
faster;

• The window of the anti-windup circuit of the PI speed controller was set up to values
close of the motor current necessary to drive the load torque;

• The window of the anti-windup circuit of the PI current controller was set up to
values well above the rated armature current and presented a large standard deviation.
It means that the anti-windup circuit to limit the action of the PI current controller
was not necessary since it was not active. It is explained since the electrical time
constant of the DC motor is very small, what makes the speed and position response
to be very slow when compared to the current response. Then, the limitation imposed
by the saturation of the controller’s output did not cause integrator’s windup in
the current control loop, therefore, any value for the dead-zone window could be
admitted.

Since the tuning given by both algorithms, PSO and SA was similar, the behaviour
of the responses of speed, current and armature voltage of the DC motor drive is also
very similar, and therefore, the responses obtained through the best tuning are presented.
As can be seen in Figure ??, the speed response of the DC motor goes quickly from zero
to the imposed reference speed, presenting an overshoot of only 0.87% and with low rise
and settling times, respectively 0.16 (s) and 0.20 (s). The armature voltage started right
at the rated value, 220 (V) but was immediately reduced to a 10 (V) level, the right
one to ensure the rated armature current, 20 (A). In steady state, the armature voltage
assumed the value of 83 (V), which was necessary to equal the voltage drop of the armature
resistance. The current response reached the rated value at start and remained high during
the acceleration. At steady-stated, settled right to the value capable of neutralising the
load torque, 6.25 (A).
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Figure 4.11 – DC motor speed (a), armature voltage (b) and armature current (c) with speed controller
gains found by using the PSO algorithm.

4.3 Case Study II: Position Control

4.3.1 PSO

The methodology to find the best tuning of a set of PI controllers for the position-
controlled DC motor drive is analogous to what was done for the speed. The main difference
is that now there are two more variables to be tuned.

To establish the stop criteria, the PSO algorithm was exhaustively executed to
determine the point of no significant improvements in the IAE objective function value.
The IAE value over iterations is illustrated in Figure 4.12. A population of 100 individuals
was considered, evaluating a total of 8000 solutions, resulting in 80 iterations. The figure
shows that no significant improvements occur after the twelfth iteration. Therefore, for the
position control problem, it was defined that the stop criteria is 1200 solution evaluations
per algorithm execution. Consequently, an additional 300 fitness evaluations will be
performed compared to the previous problem due to the inclusion of two tuning variables.

Table 4.10 displays the average and standard deviation results for the integral of
the absolute position error of the DC motor drive, in which each algorithm configuration
was repeated 20 times. The average simulation time was 747.23 (s).
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Figure 4.12 – Definition of the stop criteria - Position control problem.

Reference: author

Table 4.10 – IAE value results for the PSO algorithm to the position control problem.

Configuration Average (rad·s) Standard
Deviation (rad·s)Pop. size A. coefficients Inertia

1 20 c1 = c2 Linear 44.5265 0.0344
2 50 c1 = c2 Linear 44.5014 0.0249
3 100 c1 = c2 Linear 44.4838 0.0144
4 20 c1 > c2 Linear 44.5071 0.0297
5 50 c1 > c2 Linear 44.4921 0.0269
6 100 c1 > c2 Linear 44.2018 0.034
7 20 c1 < c2 Linear 44.7810 0.4188
8 50 c1 < c2 Linear 44.5872 0.2212
9 100 c1 < c2 Linear 44.5144 0.0392
10 20 c1 = c2 Random 44.9781 0.3762
11 50 c1 = c2 Random 44.5331 0.0251
12 100 c1 = c2 Random 44.5344 0.0246
13 20 c1 > c2 Random 44.6126 0.2273
14 50 c1 > c2 Random 44.6215 0.2675
15 100 c1 > c2 Random 44.5246 0.0211
16 20 c1 < c2 Random 44.7061 0.3499
17 50 c1 < c2 Random 44.6096 0.2121
18 100 c1 < c2 Random 44.5184 0.0299

Reference: author
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Configuration number 6, in bold, was the one that presented the lowest IAE mean,
having the largest population size, a higher cognitive coefficient than the social one, and
a linear decrease in the inertia weight. The result obtained has points in common with
the configuration that presented the lowest average in the speed control problem, which
was more interesting c1 > c2 and linear decreasing method, but with the difference in the
population size. It is also important to highlight the low standard deviation presented by
most configurations, ensuring that the stop criteria was correctly defined to the algorithm.

Figure 4.13 presents a comparison of the degrees of synergy among the parameters
of the PSO algorithm when applied to the position control problem. Figure 4.13a shows
that the population with 20 individuals performed better when combined with a higher
value for c1, while for the population with 100, the average was practically the same,
regardless of the acceleration coefficients. Figure 4.13b shows the superiority of linear
decreasing method over random adjustment with all population sizes. Finally, equal values
of c1 and c2 had better results with the linear decrease of the inertia weight, however, as
the population size increases, the performance difference becomes poorer.



Chapter 4. Results: Single-objective Formulation 86

Figure 4.13 – Interaction between PSO parameters.

(a) Population and acceleration coefficients.

(b) Population and variation of inertia weight.

(c) Acceleration coefficients and variation of inertia weight.

Reference: author
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For statistical comparison, the normality test was performed indicating a p-value <

0.0001, which implies the non-normality of the sample data, and the need for the non-
parametric Friedman test to compare the results.

Figure 4.14 – Q-Q plot of PSO sample data versus standard normal- Position control problem.

Reference: author

Through Friedman’s test, a p-value < 0.0001 was obtained. From this result, a
difference between the configurations is observed. As the Friedman test only tells if there
is a difference between the results, not specifying which one, it was necessary to perform
the post-hoc Durbin-Conover test for multiple comparison. Through this test, illustrated
in Figure 4.15, the poorer performance of configuration number 10 (population of 20
individuals, c1 = c2, and random variation for the inertia weight) in relation to all settings
(in red) except numbers 7 and 16 (in grey), is evident. As it can be seen, apart from
configuration number 10, all the others had performances statistically similar. Furthermore,
configurations 7 and 16, even with worse averages when compared to others, are still in
the region of statistical equality. Finally, the box plot of all configurations is also presented
in Figure 4.16.
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Figure 4.15 – Post-hoc analysis of the PSO algorithm for the position-controlled DC motor drive.

Reference: author
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Figure 4.16 – Box plot of PSO algorithm for the tuning of the controllers for the position-controlled DC motor drive.

Reference: author
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The evolution of the optimisation process is shown in Figure 4.17. This result
are based on simulations performed with configuration number 6 (population size of 100
individuals, c1 > c2, and linear variation of inertia weight). It is important to note that
with a population size of 100 individuals, the total number of iterations is equal to 12,
resulting in 1200 fitness evaluations.

Figure 4.17 – Average of integral of the absolute position error along the iterations - PSO Algorithm.

Reference: author

4.3.2 SA

To finalise the tests involving the single-objective algorithms, simulations of the
SA algorithm was used with the same parameters as proposed Table 4.5. The average
simulation time per run was 718.01 (s).

The mean and standard deviation results of the IAE objective for the position-
controlled DC motor are shown in Table 4.11. The configuration that presented the lowest
mean IAE is shown in bold, i.e., configuration number 10 (T0 = 10, α = 0.8 and N = 4),
which is the same one that presented the lowest mean IAE for speed control.
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Table 4.11 – IAE value results for the SA algorithm to the position control problem.

Configuration Average (rad·s) Standard
Deviation (rad·s)Temperature α N

1 10 0.8 1 47.4822 0.9235
2 50 0.8 1 47.5506 0.8878
3 100 0.8 1 47.8065 1.1886
4 10 0.9 1 47.7981 1.6175
5 50 0.9 1 47.4221 0.9935
6 100 0.9 1 47.6437 1.3046
7 10 0.99 1 48.0006 2.0467
8 50 0.99 1 47.7735 1.3162
9 100 0.99 1 47.4496 0.8468

10 10 0.8 4 47.2410 1.3174
11 50 0.8 4 47.6095 1.7248
12 100 0.8 4 47.2903 0.0854
13 10 0.9 4 47.7467 1.2809
14 50 0.9 4 47.9152 0.7050
15 100 0.9 4 47.5310 1.0910
16 10 0.99 4 47.5858 0.6690
17 50 0.99 4 47.6107 1.1816
18 100 0.99 4 47.8128 0.7046

Reference: author

The synergy between the SA parameters, when applied to the position control
problem, are shown in Figure 4.18. As it can be seen in Figure 4.18a, the cooling coefficient
equal to 0.8 showed the lowest average IAE for all temperature values.

The relationship between the parameters T0 and N is depicted in Figure 4.18b. The
figure shows that the best results were achieved with N = 4 at both the lowest and highest
temperatures. Furthermore, Figure 4.18c demonstrates that higher values of N were more
beneficial for the algorithm when used in combination with α = 0.8 and α = 0.99. It is
noteworthy that the behaviour observed in Figures 4.18b and 4.18c closely resembles that
observed when applying the SA algorithm to the speed control problem. This indicates
that the algorithm’s dynamics remain consistent when applied to different problems.
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Figure 4.18 – Interaction between SA parameters.

(a) Initial temperature and cooling coefficient.

(b) Initial temperature and number of sub-iterations.

(c) Cooling coefficient and number of sub-iterations.

Reference: author
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Although the points in Figure 4.19 approaches a straight line, it was not straight
enough to consider that the data sample has a normal distribution, since the extremity
points do not follow a linear pattern. In addition to this, through the Shapiro-Wilk test,
was obtained a p-value < 0.0001, indicating that the non-normality assumption was valid.
Thus, the non-parametric Friedman test was selected to compare the performance of the
18 configurations. The test yielded a p-value = 0.9972, which confirms that the different
SA configurations had statistically equivalent results. This conclusion is supported by the
box plot in Figure 4.21.

Figure 4.19 – Q-Q plot of SA sample data versus standard normal- Position control problem.

Reference: author

Figure 4.20 shows the value of the current solution over the iterations to configu-
ration number 10 (T0 = 10, α = 0.8 and N = 4), which presented the lowest mean IAE
value.

Figure 4.20 – IAE over the iterations for the position control problem - SA Algorithm.

Reference: author
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Figure 4.21 – Box plot of SA algorithm for the tuning of the controllers for the position-controlled DC motor drive.

Reference: author
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4.3.3 Algorithm Comparisons

It could be seen that for the position control problem, among the different configu-
rations tested for the PSO algorithm, one had a statistically lower performance than the
others.

A final algorithms comparison for a single-objective formulation was evaluated.
Table 4.12 presents the result of the Mann-Whitney U test for all IAE results obtained for
tuning the controllers for the position-controlled DC motor drive using the PSO and SA
algorithm.

Table 4.12 – Mann–Whitney U test result - Position control problem.

Comparison
Algorithm 1 Algorithm 2 p-value

PSO SA <0.0001
Reference: author

As with the speed control problem, the results again illustrate the superiority of the
PSO algorithm, which is even more evident through the box plot diagram in Figure 4.22.
Another point that draws attention is that the PSO algorithm had a very low standard
deviation, equal to 0.132 (rad·s), when compared to SA (1.105 (rad·s)). The results indicate
that the first algorithm had a faster convergence and greater robustness, while the second
presented oscillations for the chosen stop criteria.

Figure 4.22 – Box plot comparison of algorithm performance for the position control problem.

Reference: author
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4.3.4 Considerations about the Tuning Results

The mean and standard deviation of the controller’s gains were computed for
the configurations of the algorithms that produced the lowest mean IAE values in the
position-controlled DC motor drive. The results are presented in Tables 4.13 and 4.14.

Table 4.13 – Results of the tuning of the PI controllers given by the PSO.

Variables Mean Std. Deviation
PI Position
Controller

kpp 12.3098 0.4568
kip 0.0000 0.0000

PI Speed
Controller

kpω 14.4510 2.4099
kiω 12.9662 2.7367
dzω 9.2498 2.9597

PI Current
Controller

kpi 20.0000 0.0000
kii 19.9594 0.1285
dzi 125.1407 54.2912

Reference: author

Table 4.14 – Results of the tuning of the PI controllers given by the SA.

Variables Mean Std. Deviation
PI Position
Controller

kpp 14.7954 1.6766
kip 0.0775 0.1045

PI Speed
Controller

kpω 15.0005 2.7847
kiω 9.4664 2.6655
dzω 9.5830 3.0019

PI Current
Controller

kpi 18.3500 1.8714
kii 18.2317 2.6338
dzi 123.7595 46.8445

Reference: author

The results showed that the proportional gain of the position controller reached
high values, however, not high enough to cause an overshoot in the position response, which
would be undesirable for the objective function. The integral gain of the position controller
assumed very low values (nearly zero), since there is no limitation on the controller’s
output or anti-windup circuit associated with the PI position controller. Therefore, high
values for the integral gain could cause overshoot and long settling times.

Regarding the speed and current controllers, it can be observed that:

• Proportional gains were set to high values;

• The integral gains reached high values since the outputs of the controllers are limited
and the integrator’s windup is avoided. This was also expected since high values of
the integral gains are important to make the response to reach steady-state faster;
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• The window of the anti-windup circuit of the PI current controller showed a high
standard deviation, again indicating the absence of integrator’s windup in the current
control loop.

Figure 4.23 presents the position responses from the tuned gains provided by Tables
4.13 and 4.14, and it is possible to observe that the response associated with PSO, IAE =
44.5216 (rad·s), showed a lower value for the IAE objective than the response obtained by
SA, IAE = 45.3782 (rad·s).

Figure 4.23 – Comparison of DC motor position responses with gains tuned by PSO and SA algorithms.

Reference: author

Finally, Figure 4.24 shows the responses of speed, voltage and armature current
associated with the position responses present in Figure 4.23. As the two position responses
were similar and the other system characteristics were near, it was decided to illustrate
the behaviour only related to the adjustment of gains made by the PSO.

As expected, the DC motor is rapidly accelerated towards the reference position
and, when reaching it, it has its speed reduced to zero. The armature voltage started
right at the rated value but was immediately reduced to a 10 (V) level, the right one to
ensure the rated armature current, 20 (A). As the motor speeded up towards the reference
position, the armature voltage increased and, at steady state, settled right to the value
high enough to equal the armature resistance voltage drop. The current response reached
the rated value at start and remained high during the acceleration. At steady-stated,
settled right to the value capable of neutralising the load torque.
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Figure 4.24 – DC motor speed (a), armature voltage (b) and armature current (c) with controller gains
found by using the PSO algorithm.

Reference: author

4.4 Conclusion
This chapter presented the effectiveness of PSO and SA algorithms in achieving

optimal tuning of controllers for electrical drive problems. Both algorithms were used to
optimise the gains of a set of PI controllers for a DC motor drive with speed and position
control, aiming to minimise the Integral of the Absolute speed and position Error.

In terms of algorithm performance, both PSO and SA were considered with
different parameter configurations, and each one repeated 20 times. From the results, it
was observed that there was no statistically significant advantage of one over the other in
most cases. Therefore, it was demonstrated that both algorithms were able to find optimal
solutions, regardless of their configuration. However, it was observed that PSO algorithm
outperformed SA, indicating that it is better suited for the problems addressed in this
work.
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CHAPTER 5

Results: Multi-objective Formulation

This chapter presents the results of the multi-objective formulation for optimisation
problems. In Section 5.1, the selection of the objective functions that will be used is
presented. Section 5.2 presents the quality indicators used for multi-objective algorithms.
Section 5.3 show the results given by the NSGA-II and SPEA2 algorithms with different
parameters configuration. Additional results, including the Pareto Fronts, performance
comparison between algorithms, and decision-making process for speed and position control
problems, are presented in sections 5.4 and 5.5.

5.1 Choice of Objective Functions
In classical control theory, four key specifications are associated with a system’s

response, including three that associated to the transient regime: i) rise time, ii) settling
time, and iii) overshoot; and one related to the steady-state, which is the steady-state
error. While several methods can be used to evaluate a system’s response, such as the IAE
used in the previous chapter, these four specifications were selected due to their ability to
represent distinct features of a response. This is crucial for a multi-objective algorithm
approach as these algorithms are only applicable for problems where objectives are in
conflict to one another.

As described in Chapters 2 and 3, a multi-objective algorithm returns a set of
non-dominated solutions, known as the Pareto Front, at the end of the optimisation
process. This front can be visualised in the objective space. In this work, it was decided
that the number of objectives for a problem would not exceed three, giving room to a
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clear visualisation of the results. Then, only three objectives have been chosen to build
the formulation of the speed and position control problems. Then, four classic objectives
(Ess, Tr, Ts and OS) were taken 3 by 3, resulting in 4 different combinations to outline
the characteristics of the Pareto Fronts generated from each objective vector. By doing so,
it is possible to select the set of objectives that present a higher degree of conflict.

Figure 5.1 presents the four different Pareto Fronts obtained for the speed control
problem of the Speed-Controlled DC Motor Drive.

Figure 5.1 – Pareto Fronts considering different combination of objectives for the speed-controlled DC
Motor Drive.

(a) Overshoot, Settling Time and Rise Time. (b) Error, Rise Time and Overshoot.

(c) Error, Settling Time and Overshoot. (d) Error, Settling Time and Rise Time.

Reference: author

The first result, shown in Figure 5.1a, took into account the minimisation of
overshoot, settling time and rise time. It is evident that this combination of objectives
results in a set of solutions with low diversity, located in a restricted region of the
objective space, implying a low degree of conflict and that the speed responses have similar
characteristics, not justifying a multi-objective approach. A similar characteristic occurred
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in Figure 5.1d, where although the solutions occupy a larger region, they practically do
not show any variation with respect to the Ess and Tr axes.

In contrast, the Pareto Fronts presented in Figures 5.1b and 5.1c displays more
conflicting characteristics for the speed control problem. The vectors containing the most
interesting combinations of objectives from the optimisation standpoint were those that
combined the steady-state error and overshoot together with the rise and settling times,
respectively.

Similarly, Figure 5.2 presents the Pareto Front related to the position control
of the DC motor drive. As it can be seen, despite the similarities between the position
control problem and the speed control problem, the characteristics of the Pareto Fronts
are distinctive.

Figure 5.2 – Pareto Fronts considering different combination of objectives for the position-controlled DC
motor drive.

(a) Overshoot, Settling Time and Rise Time. (b) Error, Rise Time and Overshoot.

(c) Error, Settling Time and Overshoot. (d) Error, Settling Time and Rise Time.

Reference: author
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Regarding the Pareto Fronts obtained for position control, two objective combina-
tions proved to be the most interesting, as shown in Figures 5.2a and 5.2b. However, the
objective set formed by Ess, Tr, and OS has better characteristics because it provides a
greater variety of possibilities with respect to the values of the objectives.

Based on these preliminary tests, aiming to use all four classic objectives and to
choose those which provide conflicting characteristics, it was determined that for the speed
control problem, the following objectives will be considered: Overshoot, Steady-state error,
and Settling Time. Relatively to position control, the chosen objectives were Overshoot,
Steady-state error, and Rise Time. Thus, in the next sections, the NSGA-II and SPEA2
algorithms will be applied and compared against each other, based on their respective
abilities to provide good solutions for the speed and position control problems, both defined
as follows:

min F(xω) = (Ess(xω), Ts(xω), OS(xω)) (5.1)

min F(xp) = (Ess(xp), Tr(xp), OS(xp)) (5.2)

5.2 Considerations about the Quality Indicators
The quality indicators, or metrics, described in Section 2.6 were computed from the

Pareto Fronts obtained from each algorithm’s run. To obtain results that enable a better
comparison between the algorithms used, the normalisation of the solutions was carried
out in advance, followed by the calculation of the metrics. This measure is important to
standardizing the solutions represented in a three-dimensional space, allowing them to
be fairly compared. Furthermore, normalisation also enables solutions to be evaluated
independently without the magnitude order of each axis influencing the final evaluation.

To perform the normalisation, it is necessary to define boundary values for all
objectives, for both speed control and position control problems. Thus, it was defined that
the normalisation would be performed using the minimum and maximum values found for
each objective, considering all the runs of the algorithms. From the result is possible to
normalise the data using Equation 5.3.

fk
j = fj − fjmin

fjmax − fjmin

(5.3)

where fk
j represents the normalised value of the objective function fj of the non-dominated

solution k. The terms fjmin and fjmax are the minimum and maximum values found for
the objective fj.
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Tables 5.1 and 5.2 display the boundary values found for each objective in the
speed control and position control problems, respectively.

Table 5.1 – Limit values obtained in simulations for normalisation - Speed control problem.

OS (%) Ess (rad/s) Ts (s)
Min. Max. Min. Max. Min. Max.

0.0000 15.2732 0.0000 1.6489 0.1909 2.1274
Reference: author

Table 5.2 – Limit values obtained in simulations for normalisation - Position control problem.

OS (%) Ess (rad) Tr (s)
Min. Max. Min. Max. Min. Max.

0.0000 88.7548 0.0000 3.9127 0.4641 1.0612
Reference: author

The calculation of the Hypervolume (HV) was performed using the nadir point
as a reference, with each coordinate of this point indicating the worst value achieved for
each objective. Since this study deals with three-dimensional normalised minimisation
problems, the nadir point is defined as zref = (1, 1, 1). The HV indicator measures the
volume between the obtained Pareto Front and the reference point, thus higher values of
HV are preferable over lower ones.

In addition to the HV, two other quality indicators are used, Spread and RNI.
It is important mention again that for MOPs, there is no direct way to compare the
performance of the algorithms, which must be done through the combination of different
quality indicators. Each of these indicators is responsible for providing different information
about the analysed Pareto Front. The RNI is associated with the number of non-dominated
solutions that the algorithm was able to find, but alone, this metric means nothing since
the solutions found may still be poor. On the other hand, the HV says how far the whole
set is from an anti-ideal point, and finally, the S indicator quantifies how well the solutions
are distributed within the frontier, with S = 0 meaning that the solutions are equidistant.
In this way, these quality indicators provide a set of information that gives room for a
better evaluation and comparison of algorithms.

5.3 Algorithms Configuration
The algorithms used here have some parameters which adjustment can result in

gain or loss of performance during the optimisation process. Unlike the previous chapter
where algorithms with different characteristics were used, i.e., the PSO based on swarm
intelligence and the SA based on physical principles, in this multi-objective formulation for
the controller tuning problem, two evolutionary algorithms were selected, which implies
that the set of parameters to be configured is similar for both.
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The effectiveness of evolutionary algorithms is associated with three main pa-
rameters: i) population size; ii) crossover probability and iii) mutation probability. The
mentioned parameters vary according to each problem, with no rules in the literature to be
followed, although some guidelines can be found. Hassanat et al. (2019) suggests that the
population size should be in the range of [50, 100] individuals. The crossover probability is
commonly set to 0.9, as used in the original works of the NSGA-II and SPEA2 algorithms
(DEB et al., 2002; ZITZLER; LAUMANNS; THIELE, 2001), but several values have been
proposed and studied over the years, generally ranging from 0.5 to 1.0 (YE et al., 2020;
DIABAT; DESKOORES, 2016). Finally, it has been shown that a mutation probability of
1/n (where n is the number of variables) works efficiently for problems with real-valued
representation (HASSANAT et al., 2019). However, several suggestions can be found in
the literature, commonly in the range [0.01, 0.5] (SILVA, 1999; CAPRARO et al., 2008).

Given the large number of possibilities for setting the parameters of these algorithms,
various values were considered to verify their influence on the algorithm’s performance.
Based on the works cited above, Table 5.3 presents the different values and configurations
assigned to each parameter. It should be noted that these values are associated with both
NSGA-II and SPEA2.

Table 5.3 – Parameters of multi-objective algorithms.

Parameters Values
Population size {50, 100}

Crossover probability {0.5, 0.9}
Mutation probability {1/n, 0.5}

Reference: author

It was established that two values will be tested for each of the parameters,
resulting in 8 distinct configurations. To statistically treat the obtained results, each
of these configurations was repeated 20 times, with a total of 160 simulations for each
algorithm applied to both, the speed control problem and the position control one. To each
simulation, the associated algorithm returns a Pareto Front, which is used to compute the
HV, S, and RNI metrics.

In the previous chapter, a strategy was employed to define the stop criteria for
single-objective algorithms. This strategy involved performing a simulation with excessive
fitness evaluations, and through the graph of the objective function value over iterations, it
was possible to determine at what point there were no significant improvements. This test
served as a reference for the other simulations carried out. However, for a multi-objective
approach, this strategy cannot be repeated, as there are three quality indicators, and two
of them are calculated after all simulations are performed, since the data is first normalised.
Therefore, in this part of the work, the experience on PI controller optimisation problems
was used to define the stop criteria. For the speed control problem, the number of fitness
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evaluations should not exceed 3800, while for the position control problem, which has a
larger number of variables to be adjusted, this number should not exceed 5000 within
each run (SANTOS; SILVA; JÚNIOR, 2022). These values have proven to be satisfactory,
although considered small to the Evolutionary Algorithm’s standard (HUANG; LI; YAO,
2019).

Table 5.4 displays the results obtained from the NSGA-II and SPEA2 algorithms for
the speed-controlled DC motor drive. For each configuration, the mean value is presented
along with its standard deviation in parentheses. The values that are highlighted in bold
indicate that the algorithm performed better than the other one in terms of HV, Spread,
or RNI values, although not necessarily with a statistical difference. It can be seen from
the results that both algorithms exhibit similar performance. After examining the average
value of the HV where higher values are preferable, it can be observed that the NSGA-II
and SPEA2 performed in a similar way. However, when considering the Spread quality
indicator, which reflects the distribution of solutions and lower values are preferred, the
situation is reversed, with SPEA2 demonstrating an advantage in 6 out of 8 configurations
tested. Nevertheless, it is important to highlight that both algorithms were able to find
the maximum RNI value in most cases, except for configurations 2 and 4 in the SPEA2
algorithm as shown in Table 5.4. For the speed control problem, the average simulation
time was 1948.28 (s) for the NSGA-II algorithm and 1809.40 (s) for the SPEA2 algorithm.

Although the results presented in Table 5.4 may suggest some conclusions, it is
important to carry out the necessary statistical tests. Six normality tests were performed,
each one associated with an algorithm and a quality indicator. Since results of p-values
below 0.0001 were obtained in all of them, it means that normal distributions were absent
for the data samples showing that Friedman test must be used.

The results of the Friedman tests considering the three quality indicators (HV,
Spread and RNI), are presented in Table 5.5. The p-values greater than 0.05 indicate that
there was no statistically significant difference between the configurations of the same
algorithm. The test revealed that a significant difference in performance was observed only
for the SPEA2 algorithm and was associated with the S metric. In order to identify the
specific configurations with different performances, a Durbin-Conover post-hoc test was
conducted. The results of this test are presented graphically in Figure 5.3, which shows
that the only significant difference in performance was observed between configurations
4 and 5. Configuration 4, which had a population size of 100, crossover probability of
0.9, and mutation probability of 1/n, performed significantly better than configuration 5,
which had a population size of 100, crossover probability of 0.5, and mutation probability
of 0.5. Specifically, configuration 4 provided a Pareto Front with a better distribution
within the objective space.
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Table 5.4 – Results of quality indicators - Speed control problem.

Configuration Hypervolume Spread RNI
Population

Size
Crossover

Probability
Mutation

Probability NSGA-II SPEA2 NSGA-II SPEA2 NSGA-II SPEA2

1 50 0.5 1/n
0.9998

(0.0002)
0.9990

(0.0021)
0.0289

(0.0131)
0.0213

(0.0108)
1.0000

(0.0000)
1.0000

(0.0000)

2 100 0.5 1/n
0.9997

(0.0002)
0.9997

(0.0002)
0.0210

(0.0150)
0.0167

(0.0053)
1.0000

(0.0000)
0.994

(0.0013)

3 50 0.9 1/n
0.9998

(0.0001)
0.9986

(0.0028)
0.0270

(0.0223)
0.0199

(0.0115)
1.0000

(0.0000)
1.0000

(0.0000)

4 100 0.9 1/n
0.9999

(0.0001)
0.9998

(0.0003)
0.0187

(0.0171)
0.0111

(0.0043)
1.0000

(0.0000)
0.982

(0.0057)

5 50 0.5 0.5 0.9993
(0.008)

0.9995
(0.0012)

0.0191
(0.0104)

0.0238
(0.0137)

1.0000
(0.0000)

1.0000
(0.0000)

6 100 0.5 0.5 0.9999
(0.0001)

0.9999
(0.0001)

0.0249
(0.0186)

0.0144
(0.0029)

1.0000
(0.0000)

1.0000
(0.0000)

7 50 0.9 0.5 0.9994
(0.0009)

0.9992
(0.0004)

0.0194
(0.0072)

0.0225
(0.0101)

1.0000
(0.0000)

1.0000
(0.0000)

8 100 0.9 0.5 0.9999
(0.0001)

0.9999
(0.0001)

0.0235
(0.0083)

0.0138
(0.0071)

1.0000
(0.0000)

1.0000
(0.0000)

Reference: author
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Table 5.5 – Results of p-values from the Friedman tests - Speed control problem.

NSGA-II SPEA2
HV 0.4343 0.4109
S 0.6893 0.0179

RNI 0.9999 0.9540

Reference: author

Figure 5.3 – Post-hoc analysis of the SPEA2 algorithm associated with Spread quality indicator for
speed-controlled DC motor drive.

Reference: author

Regarding the position control problem, the algorithms were run with the same
configurations previously used. The results of the three quality indicators, mean and
standard deviation, are presented in Table 5.6. Unlike the results obtained for speed
control, only observing the mean value of the HV indicator, there was a superiority in
all configurations towards the SPEA2 algorithm. A similar behaviour is also observed for
the Spread metric, where 6 out the 8 configurations also expressed an advantage of the
SPEA2 algorithm. With regards to the RNI metric, there was a tie between the algorithms,
with the maximum value for the metric obtained in almost all configurations, with only
two exceptions that are meaningless given the number of repetitions performed. For the
position control problem, the average simulation time was 3051.25 (s) for the NSGA-II
algorithm and 2903.48 (s) for the SPEA2 algorithm.
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Table 5.6 – Results of quality indicators - Position control problem.

Configuration Hypervolume Spread RNI
Pop.
Size

Crossover
Probability

Mutation
Probability NSGA-II SPEA2 NSGA-II SPEA2 NSGA-II SPEA2

1 50 0.5 1/n
0.9975

(0.0021)
0.9987

(0.0007)
0.0318

(0.0080)
0.0313

(0.0107)
1.0000

(0.0000)
1.0000

(0.0000)

2 100 0.5 1/n
0.9977

(0.0018)
0.9992

(0.0004)
0.0256

(0.0083)
0.0193

(0.0054)
1.0000

(0.0000)
0.9990

(0.0032)

3 50 0.9 1/n
0.9973

(0.0013)
0.9988

(0.0011)
0.0307

(0.0054)
0.0280

(0.0119)
1.0000

(0.0000)
1.0000

(0.0000)

4 100 0.9 1/n
0.9984

(0.0008)
0.9995

(0.0001)
0.0495

(0.0455)
0.0188

(0.0045)
1.0000

(0.0000)
1.0000

(0.0000)

5 50 0.5 0.5 0.9979
(0.0017)

0.9982
(0.0031)

0.0366
(0.0307)

0.0351
(0.0095)

1.0000
(0.0000)

1.0000
(0.0000)

6 100 0.5 0.5 0.9992
(0.0003)

0.9996
(0.0001)

0.0208
(0.0054)

0.0252
(0.0113)

0.9920
(0.0253)

1.0000
(0.0000)

7 50 0.9 0.5 0.9976
(0.0016)

0.9990
(0.0007)

0.0360
(0.0080)

0.0300
(0.0094)

1.0000
(0.0000)

1.0000
(0.0000)

8 100 0.9 0.5 0.9989
(0.0002)

0.9991
(0.0016)

0.0185
(0.0034)

0.0334
(0.0277)

1,0000
(0.0000)

1.0000
(0.0000)

Reference: author
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For the statistical treatment of the results, the Shapiro-Wilk normality test was
used and a p-value less than 0.0001 was obtained, indicating the non-normality of all data
samples. As a result, the Friedman test was again selected to compare the performance of
the 8 tested configurations for each algorithm. The results are presented in Table 5.7.

Table 5.7 – Results of p-values from the Friedman tests - Position control problem.

NSGA-II SPEA2
HV 0.1454 0.2562
S 0.0291 0.0012

RNI 0.8850 0.9172

Reference: author

Similar to the speed control problem, there was no statistical difference between
the configurations in terms of HV and RNI metrics, but statistically divergent results were
obtained for both algorithms with regards to the Spread metric. To verify the existing
differences, the results of the Durbin-Conover tests are presented in Figures 5.4 and 5.5.

Figure 5.4 – Post-hoc analysis of NSGA-II algorithm with Spread quality indicator for position-controlled
DC motor drive.

Reference: author
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Figure 5.5 – Post-hoc analysis of the SPEA2 algorithm with Spread quality indicator for position-controlled
DC motor drive.

Reference: author

The post-hoc test associated with the NSGA-II algorithm revealed that configuration
number 4 (NP = 100, pc = 0.9 and pm = 1/n) was worse in terms of the Pareto Fronts
distribution when compared to configurations 6 (NP = 100, pc = 0.5 and pm = 0.5) and 8
(NP = 100, pc = 0.9 and pm = 0.5). With regards to the SPEA2 algorithm, configuration
number 5 (NP = 50, pc = 0.5 and pm = 0.5) was worse when compared to configurations 2
(NP = 100, pc = 0.5 and pm = 1/n) and 4 (NP = 100, pc = 0.9 and pm = 1/n).

It should be emphasised that throughout this section, comparisons were made only
involving the performance between different parameter setting of the same algorithm.
Later, in sections 5.4 and 5.5, statistical comparisons between the algorithms will be
presented.

5.4 Case Study I: Speed Control
The Figure 5.6 shows the Pareto Fronts obtained by the NSGA-II and SPEA2

algorithms according to configuration 4 (NP = 100, pc = 0.9 and pm = 1/n), for the
speed control problem. A similarity between the occupied regions of the fronts in the
normalised objectives space can be observed, a behaviour that is in accordance with the
values obtained by the quality indicators.
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Figure 5.6 – Pareto Fronts generated by NSGA-II and SPEA2 algorithms for speed control problem.

Reference: author

Table 5.8 displays the average results obtained for the quality indicators HV, Spread,
and RNI, considering all tested configurations for each algorithm. The standard deviation
for each result is indicated in parentheses below its corresponding mean value.

Table 5.8 – Quality indicators results - Speed control problem.

Algorithms HV S RNI

NSGA-II 0.9998
(0.0005)

0.0228
(0.0146)

1.0000
(0.0000)

SPEA2 0.9995
(0.0015)

0.0179
(0.0096)

0.997
(0.0206)

Reference: author

To make a statement whether there was superiority of one of the algorithms, a
statistical treatment of the data was performed. Since the Shapiro-Wilk test had already
indicated the non-normality of the data, the Mann-Whitney U test was used to compare
the two algorithms. Thus, the test was performed three times, comparing both algorithms
for each of the metrics, and the results are shown in Table 5.9. The test results indicate
that in terms of HV and RNI quality indicators, both algorithms have shown statistically
same performances. However, with regard to the S metric, the SPEA2 one was superior,
as illustrated in Figure 5.7.
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Table 5.9 – Mann-Whitney U test results - Speed control problem.

Comparison between NSGA-II and SPEA2
Quality Indicator p-value

HV 0.0725
S 0.0138

RNI 0.1943

Reference: author

Figure 5.7 – Comparison of results of NSGA-II and SPEA2 algorithms related to the quality indicator S -
Speed control problem.

Reference: author

5.4.1 Decision Making

Due to conflicting objectives, each solution in the Pareto Front has a unique
characteristic, resulting in different gain values for the PI controllers and the parameters
associated with the anti-windup circuits. This leads to differing speed responses, directly
related to the location of solutions within the objective space.

In a multi-objective problem formulation, it is common to have a moment when a
decision must be made in terms of which weights are established for each objective and
the best solution is chosen based on the application. The WSM method (described in
section 3.5) was used to visualise different speed responses for the controlled DC motor.
For each normalised objective (Ess, Ts and OS), an importance weight is assigned, forming
the vector w = (w1, w2, w3).

Four weight vectors were defined: w1 = (1, 0, 0), w2 = (0, 1, 0), w3 = (0, 0, 1) and
w4 = (1/3, 1/3, 1/3). Weights vectors w1, w2 and w3 prioritise only one objective at a time,
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while w4 means that all three objectives have equal significance. Vector w1 means that
minimising the steady-state error is more important; w2, the settling time whereas w3

means that, the smaller overshoot, the better. Because of this, four different types of
response are obtained as shown in Figure 5.8. It is important to note that the different
responses presented are related to only one simulation of the SPEA2 algorithm that had
good characteristics with respect to evaluation metrics, being chosen only to illustrate
some characteristics of multi-objective problems.

Figure 5.8 – Speed responses for different weight vectors.

Reference: author

As expected, the speed response changes when different objective is prioritised.
The response with the faster settling time displays less overshoot whereas the one with
the smallest stead-state error presents bigger overshoot and long settling time. According
to the trade-off between all the objectives, the speed response that complies with the
objectives having the same degree of importance, w4, is more appropriate when the fast
speed control with minimal steady-state error and overshoot matters.

Table 5.10 displays the different values of the PI controller’s gains found by the
SPEA2 algorithm, together with the anti-windup circuits window, which generated the
speed responses shown in Figure 5.8.
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Table 5.10 – Results of the tuning of the PI controllers - Speed control problem.

Variables w1 w2 w3 w4

Speed
Controller

kpω 1.4992 14.1185 13.0929 14.4042
kiω 18.5622 6.2892 2.1067 2.7818
dzω 11.9174 7.6886 12.5946 9.0746

Current
Controller

kpi 6.8058 20.0000 18.0826 17.0799
kii 13.5622 18.9716 12.8567 11.9865
dzi 91.85318 87.9296 114.3284 118.7233

Reference: author

5.5 Case Study II: Position Control
The Pareto Fronts generated by the NSGA-II and SPEA2 algorithms for position

control are presented in Figure 5.9. As it can be seen, the results provided by both
algorithms display similar characteristics. However, differently from the problem of tuning
the controllers for the speed-controlled DC motor drive, the Pareto Front displays a more
interesting curve pattern within the objective space.

Figure 5.9 – Pareto Fronts generated by NSGA-II and SPEA2 algorithms for position control.

Reference: author

The mean and standard deviation values of the quality indicators employed are
presented in Table 5.11, suggesting a superior performance of the SPEA2 algorithm over the
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NSGA-II. Therefore, statistical tests were performed to analyse the data. Due to the non-
normality of the sample data, the Mann-Whitney U test was applied considering the three
quality indicators, and the results are presented in Table 5.12. The hypervolume p-value
of less than 0.0001 suggests that the algorithms had statistically different performances,
as depicted in Figure 5.10. However, for the Spread and RNI metrics, the algorithms had
the same performance.

Table 5.11 – Quality indicators results - Position control problem.

Algorithms HV S RNI

NSGA-II 0.9979
(0.014)

0.0312
(0.0215)

0.9990
(0.089)

SPEA2 0.9990
(0.013)

0.0268
(0.0106)

0.9999
(0.0011)

Reference: author

Table 5.12 – Mann-Whitney U test results - Position control problem.

Comparison between NSGA-II and SPEA2.
Quality indicator p-value

HV <0.0001
S 0.2252

RNI 0.3866

Reference: author

Figure 5.10 – Comparison of results of NSGA-II and SPEA2 algorithms related to the quality indicator
HV - Position control problem.

Reference: author
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5.5.1 Decision Making

The same strategy of defining four weight vectors, referred to as w1 = (1, 0, 0),
w2 = (0, 1, 0), w3 = (0, 0, 1), and w4 = (1/3, 1/3, 1/3), was again used in position-controlled
electric drive. Figure 5.11 shows the different response behaviours associated with each
weight vector. The blue response had the smallest steady-state error but exhibited an
overshoot of approximately 58%. The response that prioritised rise time also had a high
overshoot and the largest steady-state error among the four responses. The green response,
associated with the smallest overshoot, exhibited critically damped characteristics and
took longer to achieved the reference value. Finally, the response associated with the vector
of balanced weights provided good characteristics associated with the chosen objectives,
without overshoot, with a low rise time, and small steady-state error. This figure clearly
displays the conflict between the objectives, and the possible different responses presented
in the Pareto Fronts obtained for this problem.

Figure 5.11 – Position responses for different weight vectors.

Reference: author

The gains values used to generate the position responses illustrated in Figure 5.11
are presented in Table 5.13.

5.6 Conclusion
This chapter presented the results associated with multi-objective formulations for

the classical problem of tuning controllers for speed and position control of a DC motor
drive. Firstly, several combinations of objectives associated with the type of response
were investigated to choose the one that presents a higher degree of conflict among them.
Afterwards, a series of runs of the algorithms regarding the possible setting of the main
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Table 5.13 – Results of the tuning of the PI controllers - Position control problem.

Variables w1 w2 w3 w4
Position

Controller
kpp 3.2279 6.5318 8.4301 12.0320
kip 0.0000 10.9163 4.9791 0.0000

Speed
Controller

kpω 17.5728 10.5028 16.9011 14.4051
kiω 8.8929 7.7277 9.8654 11.2369
dzω 3.3667 7.5325 13.8741 9.6373

Current
Controller

kpi 14.5467 20.0000 20.0000 17.0497
kii 11.8344 12.4420 20.0000 13.2961
dzi 126.6931 161.9172 120.5214 107.8293

Reference: author

parameters of the NSGA-II and SPEA2 evolutionary algorithms was performed, revealing
similar performance for most configurations. In the end, comparisons were made showing
that for the speed control problem, the SPEA2 algorithm showed superiority over the
NSGA-II with respect to the quality indicator S, while in the position control problem,
the average HV obtained by SPEA2 was higher than the one given by NSGA-II. Within
this chapter, the decision-making process was also addressed, in which four different types
of speed and position responses were presented to illustrate the wide range of possibilities
within the Pareto fronts displayed by both algorithms.
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CHAPTER 6

General Conclusions

In first place, the aim of this work was to use and compare different optimisation
algorithms applied to a DC motor drive system. Four algorithms were utilized to perform
optimal tuning of the controllers’ gains and anti-windup circuits for closed-loop speed and
position control. The non-linearity of the system, caused by limitations on the output of
the armature current demand and armature voltage applied to the DC motor at their
respective rated values, made finding the optimal tuning for regulators a challenging
task. To explore different objectives, formulations, and algorithms, two scenarios were
studied, including a single-objective formulation using the integral absolute error as a
metric to compare PSO and SA algorithms and a second formulation using multi-objective
evolutionary algorithms NSGA-II and SPEA2 to address three objectives simultaneously.
For both formulations, the large search space made the task of finding the optimal tuning
even more difficult when compared to the single-objective problem.

This work demonstrates a rigorous and systematic approach used to evaluate
optimisation algorithms applied to a DC motor drive system. A distinguished aspect is the
analysis which has been made, where a couple of distinct parameter setting configurations
were evaluated for each single-objective algorithm (PSO and SA) either for the speed
and position control problems. Furthermore, statistical tests were carried out for a fair
of algorithm performance, given the stochastic nature of metaheuristics. This resulted in
1440 runs for PSO and SA, with an average of approximately 594.1 (s) for each run. For
the multi-objective algorithms, 640 runs were performed. Although the number of different
parameter setting for the multi-objective algorithms was reduced to 8 due to the absence
of statistically significant differences, the approach taken ensured a thorough evaluation



Chapter 6. General Conclusions 119

of the algorithms. Overall, this work presents a comprehensive analysis of optimisation
algorithms for DC motor drive systems, with a total of 2080 runs to obtain enough data
before computing the results.

For the speed control problem, formulated to minimise the integral of the absolute
speed error, it was found that there was no significant difference between the different
parameter configurations considered for the PSO and SA algorithms. However, using the
Mann-Whitney U test, it was identified that the PSO algorithm performed better than
SA, converging faster towards the optimal solutions. Regarding the tuning of controller
gains, it was observed that the proportional and integral gains were set to high values,
an expected result, as it leads to faster speed responses towards the reference value. An
important point to note is related to the dead-zone window of the anti-windup circuit of
the current PI controller, which showed a high standard deviation, indicating the absence
of windup phenomenon in the current loop.

In the second case study, the position control problem was considered, and the
PSO and SA algorithms were utilized to minimise the integral of the absolute position
error. The majority of PSO algorithm’s parameters configurations performed statistically
the same, except for the configuration with a population size of 20 with equal values for
the acceleration coefficients and random variation of the inertia weight, which resulted
in inferior performance compared to others. On the other hand, the SA algorithm had
equivalent performance across the different configurations evaluated. Once again, in the
comparison between the two algorithms, PSO demonstrated superiority, achieving lower
IAE objective values and showing greater robustness than SA.

In the last part of this work, Chapter 5 presents the results associated with the
multi-objective formulations. Four classic control theory objectives (Ess, Tr, Ts and OS)
were taken into consideration, and after a series of preliminary analysis, it was decided
to formulate the speed control problem aiming to minimise the Ess, Ts and OS, and
the position control problem with the objectives Ess, Tr and OS. This choice was made
because these objectives express more conflicting characteristics. In the end, simulations
were carried out considering different parameter configurations for both algorithms. From
the obtained Pareto Fronts, three quality indicators were used to evaluate the performance
of multi-objective algorithms: Hypervolume, Spread, and RNI.

For the multi-objective speed control problem, the NSGA-II algorithm showed no
difference in performance regarding any quality indicator, while for SPEA2, configuration
number 4 (NP = 100, pc = 0.9 and pm = 1/n) came up with better Spread values than
configuration number 5 (NP = 50, pc = 0.5 and pm = 0.5). Regarding Hypervolume and
RNI, NSGA-II and SPEA2 have shown statistically equal performances, while with regards
to the Spread indicator, SPEA2 displayed an advantage over the NSGA-II.
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In the comparison between algorithms for the multi-objective position control
problem, there was a superiority for SPEA2 concerning the HV metric, while for the
Spread and RNI indicators, there was a statistical equality.

The WSM method was used to visualise different types of speed and position
response present in the Pareto Fronts displayed by the multi-objective algorithms. Four
different objective weights were assigned, which led to different tuning and, consequently,
different speed and position responses based on the objectives weight. This clearly dis-
played the conflicts between the different objectives in the Pareto Front generated by the
optimisation process.

Despite the numbers of parameters to be optimised, the algorithms reached conver-
gence after a relatively small number of runs when compared to the universe of different
possibilities to be exploited, demonstrating their effectiveness as a powerful tool for
application in electrical drive systems.

6.1 Future Works
As future works, the following are highlighted:

• The use of other metaheuristics, such as Artificial Bee Colony (ABC), Ant Colony
Optimisation (ACO), Harmony Search (HS), Multi-objective Evolutionary Algo-
rithm Based on Decomposition (MOEA/D), and Multi-objective Particle Swarm
Optimization (MOPSO);

• Automatically investigate the parameter settings of these algorithms when applied
to controller tuning problems;

• Replace the PI controllers with fuzzy logic controllers, tuning their parameters
through the implemented algorithms;

• Apply the developed algorithms in the control of different types of electric machines,
such as the electrically excited synchronous machine.
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