Programa de Pós-graduação em Física
URI Permanente desta comunidade
Navegar
Navegando Programa de Pós-graduação em Física por Por tipo de Acesso "Acesso aberto"
Agora exibindo 1 - 14 de 14
Resultados por página
Opções de Ordenação
Item Troca de Emaranhamento e Teletransporte Controlado no contexto de rotações de Faraday fotônicas(Universidade Federal de Goiás, 2011-03-04) Bastos, Wellison Peixoto; Cardoso, Wesley Bueno; Baseia, Basilio; http://lattes.cnpq.br/5804506385505435; Baseia, Basilio; Cardoso, Wesley Bueno; Mizrahi, Salomon Sylvain; Fonseca, Tertius Lima daTaking advantage of the Faraday rotations that occur in a photonic cristal placed in an optical cavity with low quality factor, we proposed two schemes to obtain the swapping of entanglement of atomic states, useful in quantum communication and quantum computation. They employ three-level atoms in a -configuration, a linearly polarized photon source, a single detector, and a quarter wave plate. Three (four) cavities are used in the first (second) scheme. An additional scheme was also proposed to obtain controlled teleportation of superposition states, partial controlled teleportation of entangled states and controlled teleportation of entanglement. In all schemes we have included the imperfections that affect the system, such as transmission and coupling of photons in optical components, the fraction of photons with a desired polarization, the quantum efficiency of single photon detection, the effective solid angle where the photon are collected, and the rate of emitted photons by the source. Under these realistic conditions we estimate the success probability of each proccess, including the time spent for its realization.Item Supercondutividade e magnetismo em pnictídeos baseados em ferro no formalismo do grupo de renormalização até dois loops(Universidade Federal de Goiás, 2012-04-04) Carvalho, Vanuildo Silva de; Silva, Hermann Freire Ferreira Lima e; http://lattes.cnpq.br/7198902316435183We study the low-energy properties of a two-band model by means of the eld-theoretical renormalization group (RG) up to two loops in order to describe some iron-based pnictide superconductors. Initially, we reproduce some known results of the RG up to one loop to show how one should proceed with the eld-theoretical RG. We then calculate the self-energy of the model and the irreducible four-point vertex functions ��(4) up to two loops. We derive the RG equations for the couplings and the quasiparticle weight of the model at this order of approximation. Following a similar procedure, we show how to determine the possible instabilities of the ground state of the model and the nature of the low-energy elementary excitations by calculating the RG ow equations up to two loops for the extended s-wave (s ) and conventional s-wave (s++) superconducting susceptibilities, charge and spin density wave susceptibilities and also the uniform charge and spin susceptibilities. The numerical analysis of these equations reveals that the couplings of the two-band model are divergent in the low-energy limit, but their ratio ows to a xed point. We obtain, by means of this analysis, that the antiferromagnetic instability is the dominant one, whereas the superconducting instability is the second most important instability. We show that the superconducting instability of s -type exceeds the s++-type when the Umklapp interaction is present and may overcome the antiferromagnetic instability for some doping value in the system. The numerical solution for the quasiparticle weight reveals that this quantity is always close to its initial value during the renormalization procedure of the model, while the uniform charge and spin susceptibilities remain nite for the energy scales where the RG approach up to two loops is valid. These results are consistent with the interpretation that the normal state of that model is, in fact, described by Landau's Fermi liquid theory with well-de ned quasiparticle excitations in the low-energy limit.Item Simulação da razão de carga de múons atmosféricos na escala TeV(Universidade Federal de Goiás, 2011-09-30) Costa, Kelen Cristiane Noleto da; Gomes, Ricardo Avelino; http://lattes.cnpq.br/6538341799051577Several analysis can be performed using atmospheric muons produced in chain reactions caused by a cosmic ray particle. We can study the muon flux for different parameterizations of the atmosphere, the moon and sun shadowing effect, the muon charge ratio, etc. In this work, we are interested in the atmospheric muon charge ratio (rμ = Nμ+/Nμ−). This ratio has been observed by several experiments, for different energy ranges. The MINOS experiment has determined the muon charge ratio (rμ) in the GeV energy scale using the Near Detector and in the TeV energy scale using the Far Detector. This experiment has observed an increase of the muon charge ratio from 1.27 to 1.37 when the energy of the primary particle changed from ∼ 100 GeV to ∼ 1 TeV. This fact can be explained by the properties of the pions ( ) and the kaons (K). For higher energies, around 10 TeV, the decay of charming hadrons becomes important as a source of atmospheric leptons. Investigating the parameterization given by the Gaisser equation in order to study the intensity of positive and negative muons separately, it is possible to obtain the equation of the pion-kaon ( K) model. Using this model it was made an adjust with the of MINOS Near and Far Detector data, finding the f and fK parameters. These parameters are the fractions that contribute to the production of positive muons coming from de e K, respectively. The experimental values obtained were: f = 0.55 and fK = 0.70. In this work we simulated extensive air showers using the CORSIKA code. Different models that describe the hadronic interactions for high energy particles were used. Our goal was to verify if the models could reproduce the increase of muon charge ratio. This increase is associated with physics involving pion and kaon decays. We found the following parameters: f = 0.547 ± 0.003 and fK = 0.64 ± 0.02 for the QGSJET 01C model, f = 0.604 ± 0.003 and fK = 0.73 ± 0.02 for the SIBYLL model, f = 0.572 ± 0.003 and fK = 0.70 ± 0.02 for the VENUS model, f = 0.545 ± 0.004 and fK = 0.62 ± 0.03 for the QGSJETII model and f = 0.570 ± 0.003 and fK = 0.65 ± 0.02 for the DPMJET model. The increase of the muon charge ratio found in the MINOS data was 7.8%. In our simulation we found an increase of 3.2%, 8.3%, 5.7%, %4.0 and 2.5% for each one of the models, respectively. With these results, it was possible to observe that simulation models also show a significant increase of ratio, when we moved from scale GeV scale for TeV. And of course, this increase is characterized by properties of pions and kaons noting that physics is considered by the codes of models.Item Cálculos de propriedades elétricas da metanol incluindo correções vibracionais e correlação eletrônica(Universidade Federal de Goiás, 2009) Dutra, Adriano da Silva; Castro, Marcos Antônio de; http://lattes.cnpq.br/3500875789893244In this work we report results for the polarizability, and first and second hyperpolariz- abilities of the methanol molecule including vibrational corrections and electron correlation effects. The Vibrational corrections were computed using the perturbation theoretic approach of Bishop and Kirtman and the electron correlation effects were taken into account through the CCSD(T) method implemented in the GAUSSIAN 03 program. The electronic contributions to the electric properties were calculated using the finite-field scheme. Comparisons of our CCSD(T) values with previous TDHF result show that the electron correlation effects, are in general, important. An analysis of the importance of the vibrational corrections shows that the zpva correction is not negligible, specially for the hyperpolarizabilities. The pv correction is, in general, important and the double-harmonic approximation is suitable to the calculation of this correction for most of the nonlinear optical processes studied.Item Propriedades magneto-ópticas de colóides magnéticos á base de nanopartículas de magnetita recobertas com prata(Universidade Federal de Goiás, 2010-05-17) Lopes Junior, José Carlos Campello; Bakuzis, Andris Figueiroa; http://lattes.cnpq.br/3477269475651042In this work we investigated, theoretically and experimentally, the magneto-optical properties of a magnetic fluid consisting of core-shell nanoparticles, where the core is made of magnetite, while the shell is silver. The theoretical model used was based on Mie s theory, under the electrostatic approximation, i.e. for nanoparticles with diameters much less than the incident wavelength (lambda). A Clausius-Mosotti for a core-shell system was used to calculate the electrical susceptibility of the core-shell nanoparticle for equals to 632 nm. The susceptibility was shown to be strongly dependent on the core diameter and the shell thickness. Nevertheless, a maximum value of 7.20 (greater than isolated nanoparticles of silver, which has 0 = 4.30, or magnetite with 0 = 1.47) was obtained for a fraction f, defined as f = (Dcore/Dcore−shell)3, equal to 0.36. This result suggest that there exist an ideal fraction f for nanocomposites with enhanced optical properties. In order to compare our theoretical results with experimental data a core-shell magnetic fluid was synthesized on the Institute of Chemistry of UFG by the group of Dr. Em´ılia Celma de Oliveira Lima. The nanoparticles were suspended in water at fisiological pH and recovered by a double layer of lauric acid (dodecanoic acid). The nanoparticles were characterized by X-ray diffraction, high resolution electron transmission, energy dispersive X-ray spectroscopy, and vibrating sample magnetometer. The Sturges method was used to obtain the nanoparticle diameter histogram. The data revealed the existence of a bimodal nanoparticle distribution. Both distributions were curve fitted using a lognormal function. The modal diameter of one of them was 9.24 ± 0.03 nm with a dispersity of 0.27 ± 0.02, while for the other one we found a modal diameter of 23.0 ± 0.2 nm with disperisty 0.2 ± 0.1. The energy dispersive X-ray spectroscopy confirmed the existence of magnetite and silver only for larger particle diameters, while the lower ones only magnetite was found. From the experimental analysis we confirmed the synthesis of a magnetic fluid containing 10% of core-shell nanoparticles. Magnetization data was used to estimate the magnetic particle volume fraction. The magneto-optical properties were obtained using a magnetotransmissivity technique, where the polarizer and analyser axis are positioned on the magnetic field direction. The sample containing 10% of core-shell nanoparticles, with a total particle volume fraction of 0.18%, had shown an extinction of light of 100% for a magnetic field of only 500 Oe, while a magnetic fluid with 100% of core nanoparticles, at a similar particle concentration (0.15%), had shown a 50% extinction of light at the same field range. The magnetotransmissivity data were curve fitted with a theoretical model containing only two parameters, one related to the electrical susceptibility and the other to the formation of self-organized nanostructures in the colloid. The mean agglomerate size (nanoparticles forming linear chains) had changed from 2.09 to 3.36 for a particle volume fraction increasing from 0.06% to 0.18%. Using the estimative of the double layer lenght of lauric acid, approximately 2 nm, and analyzing the magnetotransmissivity data for several particle concentrations, we were able to obtain the fraction f of core-shell nanoparticles of 0.17. This result, together with TEM data, allowed us to calculate the core diameter of the core-shell nanoparticle as 13 nm. Indeed such result suggest that in order to be suscessful in coating the nanoparticle with the shell element one might need monodisperse-like nanoparticle systems.Item Superposição assimétrica de estados coerentes circulares(Universidade Federal de Goiás, 2002) Maia, Luciano Paulo de Araújo; Baseia, Basilio; http://lattes.cnpq.br/5804506385505435In this paper we present a new quantum state of light, obtained from an asymmetric superposition of coherent states in circular stationary mode. The generation of this state was proposed and the experimental apparatus required is presented. General expressions describing various properties (statistical distribution, variances, atomic inversion, etc..) Were obtained for arbitrary generations. We observed how they behave their properties by varying the phase between the components of superpo- sition states. We show that the statistical properties do not fully characterize the resulting state, showing different states with the same statistics. Alternative ways to distinguish these states were considered. Based on quantum interference in phase space, we show how we can generate an approximation of the number state N2 thru a process called "quantum sculpture,"and check the influence of the stage in this process. Finally, we measured the classicalidade not analyze this state and its representation in phase space.Item Estudo e simulação do déficit de raios cósmicos devido à lua no experimento MINOS(Universidade Federal de Goiás, 2011-09-01) Medeiros, Michelle Mesquita de; Gomes, Ricardo Avelino; http://lattes.cnpq.br/6538341799051577Celestial objectsItem Estresse oxidativo em membranas de eritrócito avaliado por ressonância paramagnética eletrônica(Universidade Federal de Goiás, 2010-03-26) Mendanha Neto, Sebastião Antônio; Alonso, Antônio; http://lattes.cnpq.br/5013069863616789The oxidative stress effects promoted by hydrogen peroxide (H2O2) and 2,2 -Azobis(2- methylpropionamidine)dihydrochloride (AAPH) in proteins and lipids of the erythrocyte membrane were investigated by testing the oxidative hemolysis, the formation of malondialdehyde (MDA) in addition to spectroscopic electron paramagnetic resonance (EPR) of lipid spin label 5-DOXIL stearic acid (5-DSA) and 3-maleimide proxyl (5-MSL) that binds covalently to erythrocyte s membrane proteins. The spectral parameter 2Ak obtained directly from the EPR spectra of spin label 5-DSA structured in the lipid bilayer of the erythrocyte membrane was sensitive to changes in the dynamics of lipids resulting on the oxidation of membrane proteins. The oxidation of proteins observed for very low concentrations of H2O2 (starting at 100 μM) were confirmed with spin label 5-MSL. Lipid peroxidation indicated the oxidative hemolysis and formation of MDA occurred at concentrations of H2O2 about 8 times larger (starting at 800 μM). Ascorbic acid and -tocopherol protect the membrane by hemolysis and MDA tests, but did not prevent the stiffening of the erythrocyte membrane. The spectra of the spin label 5-MSL revealed the existence of two distinct thiol groups in erythrocyte membrane proteins that differ in their structural configurations and sensitivity to oxidative attack. The SH site that has higher exposure to solvent and less reactivity to spin label 5-MSL was the most vulnerable to oxidation. It is well known that upon oxidation hemoglobin binds to the membrane and the results of this study suggest that this effect may be accompanied by a further increase in the parameter 2Ak of the spin label 5-DSA. Catalase present in erythrocytes proved to be an effective protector of lipid peroxidation and oxidation of membrane proteins induced by hydrogen peroxide.Item Condutância em nanofios magnéticos diluídos(Universidade Federal de Goiás, 2010) Mendes, Udson Cabra; Leão, Salvino de Araújo; Avelar, Ardiley Torres; http://lattes.cnpq.br/5732286631137637We investigate core-shell nanowires of diluted magnetic semiconductors (DMS) with remote n-type modulation doping. The incorporation of Mn2 ions acting as spin 5/2 impurities in the core region of the wire gives rise to a strong s-d exchange coupling between electrons in the wire and those of the d levels of the Mn2 ions. Applying an external magnetic eld along the axis of the wire, within the mean eld approximation, the s-d exchange generates a spin-dependent core potential. A gate voltage is applied radially to wire, to obtain some control over the density of the wire. Electronic strucutre of the wire was calculated within the e?ective mass approximation, in both approximations Hartree and spin density functional theory. We calculated the conductance of wire using the Landauer-B?uttiker formulation in the linear response regime, which generally results in a total conductance with well-de ned plateaus in GT = 2; 6; 10G0 (G0 = e2=h is the quanta of conductance), which occurred because in the system investigated the rst level is twofold degenerated (spin degenerescence) and the others are fourfold degenerated (spin degenerescence and orbital angular momentum). In the absence of a magnetic eld we observe that when we take into account the e?ects of exchange and correlation, the states with eigenvalues of Lz nonzero will be polarized while those with l = 0 isn't polarized. This unpolarized level with eigenvalue of Lz null suggests that, perhaps, the 0.7 anomaly (the emergence of two plateau at G = 0:7G0 and the other in G = G0) quantum wires on existing geometry of split-gate is related to the geometry of the wire. The results for total energy show that there are a competition between the ferromagnetic and paramagnetic states.Item Aplicação do método de Rietveld `a determinação da distribuição de cátions em ferritas de cobalto e de magnésio(Universidade Federal de Goiás, 2010) Nunes, Rafael Silva; Sabino, José Ricardo; http://lattes.cnpq.br/9101677399031185We present cobalt ferrites (CoxFe3−xO4) and magnesium ferrites (MgxFe3−xO4) nanoparticles synthesized by combustion reaction and coprecipitation. The study by powder diffraction, with CuK (λ =1,5406 °A) radiation, allowed us a phase qualitative analysis, determine the lattice parameter and the crystallites average size. How Co and Fe scattering factor are close to this radiation, we also used synchrotron radiation with energies 7.038 KeV, 7.112 KeV, 7.122 KeV and 7.718 KeV. With Rietveld refinement we made a phase quantitative analysis, we found Fe2O3, MgO and MgO2 as additional phases for MgxFe3−xO4 and we found CoO and Co3O4 as additional phases for Co1,2Fe1,8O4, all obtained by combustion method. The distribution determined for all ferrites nanoparticles characterized a cubic spinel type mixed, i.e. divalent ions were found in both sites. With experiments on a vibrating sample magnetometer (VSM) we compare the saturation magnetization of our samples with the magnetization of the unit cell calculated from the distribution determined experimentally.Item O método do grupo de renormalização de teoria de campos aplicado ao modelo de Anderson de uma impureza(Universidade Federal de Goiás, 2012-06-21) Rocha, Francisco Manoel Bezerra e; Silva, Hermann Freire Ferreira Lima e; http://lattes.cnpq.br/4216155178288341We apply the perturbative eld-theoretical renormalization group (RG) implemented within an approach which considers the calculation for the e ective couplings up to one loop and the computation of the self-energy up to two loops of the single-impurity Anderson model with particle-hole symmetry. To this end, we follow Feynman's diagrammatic method applied to the model and we begin our analysis by calculating the so-called vertex corrections up to one loop. The e ect of correlations on the single-particle excitations is viewed most clearly by means of the computation of the self-energy and its closely-related quantity: the quasiparticle weight. Moreover, to determine the nature of the ground state of the model, we also perform the RG calculation of the so-called uniform spin susceptibility. Then we apply the RG technique, adapting it conveniently to our problem at hand. The next step consists of deriving analytically and solving numerically the coupled di erential RG ow equations for the e ective couplings, the quasiparticle weight and the uniform spin susceptibility. We show that our results agree qualitatively with other analytical works available in the literature, such as, e.g., the functional RG. To benchmark our method, we compare our results with Wilson's numerical RG data. This latter method provides highly accurate numerical results for the quantities analyzed here and, for this reason, it will be an important check for our analytical method. Since the eldtheoretical RG turns out to be a exible technique and also simpler to be implemented at higher orders if compared to some versions of the functional RG method, we argue here that the present methodology could potentially o er a possible alternative to other analytic RG methods to describe eletronic correlations within the single-impurity Anderson model.Item Estudo magnético e magneto-ótico do internalização de nanopartículas magnéticas biocompatíveis de γ-F e2O3 recobertas com dextrana por células tumorais de sarcoma(Universidade Federal de Goiás, 2010) Silva, Anderson Costa da; Bakuzis, Andris Figueiroa; http://lattes.cnpq.br/3477269475651042In this work we investigated the internalization process of magnetite nanoparticles, surface coated with dextran, by mice tumour cells of Sarcoma 180 (S180) through the tech- niques of vibrating sample magnetometer (VSM) and static magnetic birefringence (SMB). The magnetic fluid sample, stable in physiological conditions, was prepared by the coprecip- itation method. The growth of nanoparticles occurred in conjunction with the nanoparticle surface coating process by dextran. The crystal structure was confirmed by X-ray diffraction. The nanoparticles were characterized by high resolution transmission electronic microscopy. The Sturges method was used to obtain the polydispersity in diameter, which was fitted by a lognormal size distribution obtaining a modal diameter of 5.5 ± 0.1 nm and dispersity of 0.18 ± 0.02.The mice tumour cell sarcoma 180 was obtained using protocol established by the American Type Culture Collection (ATCC, Rockville, MD, USA). Studies of cytotoxicity, using the MTT method, were obtained for a nanoparticle volumetric fraction of φ = 0.00065 after one and five hours of exposure of cells S180 to the nanoparticles. In particular, we found a cellular viability of 87 ± 11 % after one hour of exposure proving that there was no appreciable cell death in the time interval in which the measurements of MAV and BME were performed. Magnetization measurements were performed to obtain the volume fraction of nanoparticles. Tests regarding the effect of centrifugation of nanoparticles suspended in cell culture medium RPMI 1640 showed a extremely low sedimentation of magnetic nanoparticles. A procedure, using a acceleration of 260×g for 10 minutes, was used to separate cells containing internalized nanoparticles from nanoparticles suspended in RPMI 1640. Measurements of magnetization of S180 cells containing nanoparticles were performed in a wide range of exposure time (100 iv minutes). Between 10 and 70 minutes the amount of nanoparticles in mass unit increased from 52 ± 20 pg/cell to 110 ± 15 pg/cell. Indeed magnetometry data indicate that the process of internalization had achieved saturation between 30 to 40 minutes. Magneto-optical technique of SMB was also used to investigate the process of inter- nalization of nanoparticles. Firstly, SMB measurements were performed in control samples consisting of magnetic nanoparticles suspended in RPMI 1640. We investigated the effects of nanoparticle concentration and aging time (related to the dynamics of nanoparticle agglom- eration). In particular, the average size of the agglomerate (Q), associated with the number of nanoparticles forming a linear chain, remained basically constant, Q = 4.8 ± 0.2 for a full- time of 70 minutes. Magnetic birefringence saturation data also remained stable in this time interval. Additionally, analysis of the measurements of SMB were also used to estimate the thickness of the coating layer (dextran), from which we found 1.70 ± 0.02 nm. Unlike VSM data, SMB measurements were obtained on samples containing both S180 cells and magnetic nanoparticles inside the RPMI medium 1640. Data were obtained in a wide range of time (120 min.). Initially it was observed that the SMB signal decreases in a time range and then increases again (between 30-40 min.). The fit of the experimental data indicate that the mag- netic birefringence saturation (∆ns) decreases in the first 30 minutes and then increases again smoothly, while the average size of the cluster has the opposite behavior, i.e. increases in the first 30 minutes and then decreases. In particular, for a exposure time, t(exp), of 10 min. the average size of the agglomerate (magnetic birefringence saturation) changed from 4.18 ± 0.04 (∆n(s) = 3.41 ± 0.02 ×1018 cm−3 min. As the birefringence saturation is proportional to the number of nanoparticles contribut- ing to the magneto-optical signal one can conclude that the decrease in the magneto-optical signal was due to the process of internalization of magnetic nanoparticles by cells S180. On the other hand, the analysis of the aging time dependence of the mean size of the agglomerate also suggests that the process of internalization occurs primarily with anisometric nanoparticles or nanostructures forming small agglomerates. Finally, after reaching saturation of the process ) to 5.22 ± 0.08 (∆ns = 2.75 ± 0.02 ×1018 cm−3 ) at texp = 30 v of nanoparticle internalization we found a formation of small agglomerates in the RPMI 1640 medium, which is responsible for the increased intensity of the magneto-optical signal, as well as the decrease of the mean size of the agglomerate for times longer than 30 minutes.Item Cálculo da condutividade térmica do Argônio sólido puro e com defeito pontual(Universidade Federal de Goiás, 2008-03-14) Trindade, Ranyere Deyler; Silva, Ladir Cândido da; http://lattes.cnpq.br/7442411485710574In this work, using the Green-Kubo method combined with Molecular Dynamic (DM), we calculate the thermal conductivity of a solid Argon "free of defects"and with point defect present, for temperatures varying from 10 up to 60 K at density 22,3 ml/mol. The obtained results are in good agreement with the available theoretical and experimental results in the limites of low and high temperatures, but with some discrepances in about 15 % for intermediate values of temperatures. The purpose to include point defects with the objective of correction of the simulational results to compare with experimental measuremments for intermediate temperatues had not the expected e?ect. However, we believe that it should be due to the fact that the density used in the simulation for the point defect is high based on the experimental estimates of point defect density in this system. Our results suggest that the Green-Kubo method combined with Molecular Dynamics is a powerful tool to calculate the thermal conductivity of solids at high temperatures. With the construction of accurate and reliable interatomic potentials to describe more complex materials, such as high temperature ceramic and minerals at extreme condiction of pressure and temperature, this method could soon become very useful to calculate thermal conductivity in materials where the access to experimental data is hard.Item Estudo e geração de estados não clássicos em nanocircuitos: propriedades e aplicações(Universidade Federal de Goiás, 2012) Valverde, Clodoaldo; Avelar, Ardiley Torres; http://lattes.cnpq.br/5732286631137637; Baseia, Basilio; http://lattes.cnpq.br/5804506385505435In this work we used an arrangement consisting of Cooper pairs (Cooper Pair Box, CPB) interacting with a nanomechanical Resonator (NR) for various studies: to produce controlable holes in the statistical distribution of excitations of the NR, for resonant and non-resonant cases; to study the evolution of the entropy and the inversion of excitations, including losses in the CPB; and to study the evolution of the Wigner function under the infuence of a reservoir. We have obtained the exact solution of the master equation describing the non-degenerate parametric amplifier interacting with a generalized model of linear phase sensitive reservoir, having the form of the equation equivalent to that of the Fokker-Planck propagator for the Wigner function. We have calculated the Wigner function describing the temporal evolution of a state initially in a superposition of two coherent states, a kind of "Schr?odinger cat", and finally, we have also studied the temporal evolution of the negativity of this function, one of the indicators of nonclassicality of vibrational states of the NR.