Doutorado em Agronomia (EA)
URI Permanente para esta coleção
Navegar
Navegando Doutorado em Agronomia (EA) por Por Orientador "Campos, Alfredo Borges de"
Agora exibindo 1 - 1 de 1
Resultados por página
Opções de Ordenação
Item Movimentação hídrica do íon potássio em neossolo quartzarênico sob cana-de-açúcar e vegetação de cerrado(Universidade Federal de Goiás, 2015-08-17) Ucker, Fernando Ernesto; Hernani, Luis Carlos; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4783468P4; Campos, Alfredo Borges de; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4723960T6; Campos, Alfredo Borges de; Brasil, Eliana Paula Fernandes; Silva, Melissa Ananias Soler da; Macedo, José Ronaldo de; Hernani, Luis CarlosIn the state of Goiás sugarcane cultivation has expanded into areas of sandy soil, known as fragile because of their high risk of degradation. Potassium is a vital nutrient used in the cultivation of sugarcane and has been applied to these cultivated soils. Little is known about the mobility of the potassium ion in such soils. This thesis set out to assess the vertical movement of potassium in Quartz-sand Neosols found in an area of the Araucária farm, in the municipality of Mineiros, Goiás, which is under two types of regime: sugarcane cultivation and Cerrado vegetation. The movement of this nutrient was studied on the basis of three experiments: 1st) a laboratory experiment with columns. Soil samples were sent to the Hydraulics Laboratory at the Pontifical Catholic University of Goiás where the experiment with columns was performed in triplicate for each type of soil management. Each 100 cm high column was sectioned into rings of 10 cm in height by 7.5 cm in diameter. A total of 105 mg of K2O, in the form of KCl, was applied to the surface layer. Over the next ten days, deionized water was applied to each column, the equivalent of 600 mm precipitation at the end. The leachate effluent was collected periodically and sent for potassium content analysis. At the end of the ten-day period, the columns were dismantled, and the soil in each ring was collected and sent for analysis of potassium, organic matter and pH levels. The mean values of potassium were submitted to descriptive analysis and a t test (α = 0.05); 2nd) a field experiment under two types of water regime, natural and controlled. In the natural water regime, rectangular metal troughs measuring 0.5 m2 were made. Three were installed in soil under sugarcane cultivation and another three in the same soil under Cerrado vegetation. Witness soil samples were collected in November 2013, before the onset of the rainy season in that region. After this initial collection, the equivalent of 120 kg ha-1 of K2O in the form of KCl was applied to the soil, and left for the full wet season, until the end of April of the following year. After that, soil samples were collected from the troughs at each level of 10 cm to a depth of 100 cm. The analysis of potassium movement under the controlled water regime took place in November 2013. The areas assessed were the same as those of the natural water regime. For this study concentric rings were used to delimit the area and ensure a vertical flow of the water applied. The equivalent of 600 mm of water was applied within the internal ring. After 24 hours the same amount of K+ as was applied in the natural regime and water equivalent to 600 mm of accumulated rain were applied. After 48 hours, soil sampling was carried out with a Dutch auger at levels of 10 cm to a depth of 100 cm. The soil samples collected in the field were sent for analysis in terms of total sand, silt, total clay, K+, pH and organic matter, and; 3rd) the field experiment with biennial evaluation of potassium movement. This experiment involved two parallel stretches of Quartz-sand Neosols along a slope, one with Cerrado vegetation and the other with sugarcane cultivation. In each of these stretches a transect with ten sampling points, each 30 m apart, was established and samples were collected at each point. Composite samples were collected in the two areas under study at depths of 0-20, 20-40, 40-60, 100-120 and 160-180 cm. After collection, the samples were bagged and appropriately identified, then forwarded for analysis to the Embrapa Soils Laboratory in Rio de Janeiro. The collections were made in November 2011 and 2012, the beginning of the rainy season in the region under study, and in April 2012 and 2013, the end of the rainy season, yielding a two-year evaluation period. In the laboratory, the samples were analyzed for cation exchange capacity, pH and organic matter, as well as for potassium. It was concluded from the first experiment that in the Quartz-sand Neosols there could be a significant loss of K+ after applying potassium to the soil. An increase of more than 1% in organic matter content could positively influence K+ retention in this type of soil. It was concluded from the second experiment that there was a significant movement of potassium levels to lower layers in the natural water regime after the accumulated rainfall of 1638 mm, both in the soil under cultivation and under Cerrado vegetation. From the third experiment it was concluded that the potassium ion behaved differently in the two soil regimes, sugarcane cultivation and Cerrado vegetation, and an increase in the nutrient was seen in layers of more than 100 cm in depth.