Use este identificador para citar ou linkar para este item: http://repositorio.bc.ufg.br/handle/ri/15280
Tipo do documento: Artigo
Título: Bright solitons from the nonpolynomial Schrödinger equation with inhomogeneous defocusing nonlinearities
Autor: Cardoso, Wesley Bueno
Zeng, J.
Avelar, Ardiley Torres
Bazeia Filho, Dionisio
Malomed, Boris A.
Abstract: Extending the recent work on models with spatially nonuniform nonlinearities, we study bright solitons generated by the nonpolynomial self-defocusing (SDF) nonlinearity in the framework of the one-dimensional (1D) Mu˜noz-Mateo–Delgado (MM-D) equation (the 1D reduction of the Gross-Pitaevskii equation with the SDF nonlinearity), with the local strength of the nonlinearity growing at |x| → ∞ faster than |x|. We produce numerical solutions and analytical ones, obtained by means of the Thomas-Fermi approximation, for nodeless ground states and for excited modes with one, two, three and four nodes, in two versions of the model, with steep (exponential) and mild (algebraic) nonlinear-modulation profiles. In both cases, the ground states and the single-node ones are completely stable, while the stability of the higher-order modes depends on their norm (in the case of the algebraic modulation, they are fully unstable). Unstable states spontaneously evolve into their stable lower-order counterparts.
País: Estados unidos
Unidade acadêmica: Instituto de Física - IF (RG)
Citação: W. B. Cardoso; ZENG, J.; AVELAR, A. T.; BAZEIA, D.; MALOMED, B. A. Bright solitons from the nonpolynomial Schrödinger equation with inhomogeneous defocusing nonlinearities. Physical Review. E, Melville, v. 88, e025201, 2013.
Tipo de acesso: Acesso Aberto
Identificador do documento: 10.1103/PhysRevE.88.025201
Identificador do documento: 10.1103/PhysRevE.88.025201
URI: http://repositorio.bc.ufg.br/handle/ri/15280
Data de publicação: 2013
Aparece nas coleções:IF - Artigos publicados em periódicos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Artigo - Wesley Bueno Cardosos - 2013.pdf1,13 MBAdobe PDFThumbnail
Baixar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons