Ação antimicrobiana de enzimas hidrolíticas produzidas por Trichoderma asperellum e imobilizadas em blendas de polímeros biodegradáveis.

Carregando...
Imagem de Miniatura

Data

2011-01-28

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Goiás

Resumo

The hydrolytic activity of enzymes produced by Trichoderma asperellum, immobilized biodegradable films, as growth inhibitor of microorganisms was tested. The inhibitory activity was demonstrated on Aspergillus niger, Penicillium sp. and Sclerotinia sclerotiorum, microorganisms usually related to the attack and/or food contamination at the field or packaged. We used two polymer blends with different compositions, cassava starch and poly-butylene adipate-co-terephthalate (Ecoflex®, BASF Chemical Company) and other composed for polyvinyl alcohol (PVA) and polysaccharide cashew gum (PEJU). T. asperellum was induced to produce enzymes involved in the attack mycoparasite (N-acetylglucosaminidases, β-1,3-glucanases, chitinases and proteases) by the addition of crude chitin in the growth medium. The enzymes produced in major quantity were N-acetylglucosaminidase and chitinase. The pool of enzymes produced in the experiments was then used for immobilization tests. The immobilization process was performed in films by two methods: covalent and ionic bonding. In both methods, the presence of immobilized hydrolytic enzymes resulted in reduced growth of microorganisms, but the covalent immobilization of the results were more expressive. S.sclerotiorum was the microorganism most sensitive, followed by A. niger and Penicillium sp. To confirm the action of hydrolytic enzymes produced by T. asperellum and evaluate the effects they produce cell wall of microorganisms and other structures, the films with enzyme immobilized by covalent bonding were subjected to scanning electron microscopy. The structures most affected were hyphae and spores. Overall, the synergistic action of all enzymes produced by T. asperellum, reduced the growth of microorganisms when immobilized on the surface of the films Starch-Ecoflex® and PVA-PEJU. Moreover, the polymer blends tested exhibited desirable characteristics for future use in food packaging and most importantly, also provide efficient systems for the immobilization of enzymes.

Descrição

Citação

SILVA, Barbara Dumas Santos. Antimicrobial action of hydrolytic enzymes produced for Trichoderma asperellum and immobilized on biodegradable polymer blends.. 2011. 83 f. Dissertação (Mestrado em Ciências Biolóicas) - Universidade Federal de Goiás, Goiânia, 2011.