Identificação de bactérias degradadoras de biodiesel, diesel e misturas em tanques de armazenamento

Carregando...
Imagem de Miniatura

Data

2010-03-14

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Goiás

Resumo

Fuels derived from oil have been responsible for the largest portion of total water pollution, soil and air around the world. Based on this fact, some proposals have been made for the replacement of diesel obtained from petroleum. An alternative is biodiesel, fuel made from esters, methyl or ethyl, natural oils from oilseeds (soybeans, corn, rapeseed, palm, sunflower, animal fats etc). Biodiesel is more susceptible than diesel to attack by bacteria that occur naturally in the environment due to its chemical composition is much simpler than that of diesel oil. The objective of this research was the isolation, identification and characterization of bacteria capable of degrading diesel, and biodiesel blends (B5). The bacterial isolates were obtained from samples collected from fuel storage tanks: (1) gas station in the transportation sector, Federal University of Goias Goiania campus, (2) vehicles that were in a workshop with a diagnosis of obstruction of fuel pump, and (3) tank of pure biodiesel (B100) obtained directly from production. The fuel samples were filtered through a membrane filter with pores of 0.45 μM. These membranes were incubated at 30 ºC for 7 days in BHI Agar and Nutrient Agar to obtain pure colonies. The verification of the biodegradation was performed in micro plates 96 holes ELISA. The isolates were inoculated in a solution containing the culture Low, oxy-dye reducer DCPIP (2, 6-dichlorophenol indophenol) and fuel (pure biodiesel blend biodiesel / diesel fuel and pure diesel) as carbon source. All 41 isolates tested showed degradation potential for fuel analysis. Twenty-nine isolates were identified by sequencing of 16S rDNA, and identified as Bacillus valismortis (2), B. licheniformis (3), B. thuringiensis (1), B. amyloliquefaciens (2), B. subtilis (2), Lysinibacillus sphaericus (11), L. fusiformis (2), Staphylococcus sp. (2), S. capitis (1), Kocuria palustris (1), Citrobacter amalonaticus (1), Stenotrophomonas maltophilia (1). It was confirmed the potential degradation of B100 biodiesel, a blend of biodiesel / diesel (B5) and pure diesel by bacteria isolated by testing using the redox dye DCPIP.

Descrição

Citação

VAZ, Fernando de Souza. Identification of degrading bacteria Biodiesel Blends on Diesel and Storage Tanks. 2010. 59 f. Dissertação (Mestrado em Medicina) - Universidade Federal de Goiás, Goiânia, 2010.