Superfícies Completas com Curvatura Gaussiana Constante em H2×R e S2×R

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Goiás

Resumo

In this work we classify the complete surfaces with constant Gaussian curvature into the H2×R and S2×R.We show that exists a unique complete surface, up to isometries, with positive constant Gaussian curvature into the H2×R, and greater than one, into the S2×R and that there is no complete surfaces with constant Gaussian curvature K(I) < &#8722;1 into the H2×R and S2×R. We prove that even if &#8722;1 &#8804; K(I) < 0 there are infinite complete surfaces into the H2 ×R with Gaussian curvature K(I) and with additional assumption we prove there is if &#8722;1 &#8804; K(I) < 0 and 0 < K(I) < 1 there is no exists complete surfaces into S2×R with Gaussian curvature K(I). These results were obtained by Aledo, Espinar and Gálvez and can be found in [1].

Descrição

Citação

CINTRA, Adriana Araujo. Complete surfaces with constant Gaussian curvature into the H2×R and S2 ×R. 2010. 99 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de Goiás, Goiânia, 2010.