Problema de particionamento em subgrafos complementares: complexidade e convexidade

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Goiás

Resumo

In this work, we introduce the PARTITION INTO COMPLEMENTARY SUBGRAPHS (COMP-SUB(Pi)) problem, which receives as input a graph H and an edge set property Pi, and the goal is determining whether is possible to decompose the graph H into complementary subgraphs G and \bar{G} such that the edge set M between G and \bar{G} satisfies property Pi. COMP-SUB(Pi) generalizes the recognition of complementary prisms problem, which is the case when Pi is a perfect matching between corresponding vertices of G and \bar{G}. When Pi is arbitrary, we show results for k-clique or k-independent set free graphs. On property P_\emptyset which considers M =\emptyset, we show that COMP-SUB(P_\emptyset) is GI-complete for chordal graphs, but can be solved efficiently for permutation, comparability, co- comparability and co-interval graphs. Furthermore, we obtain characterizations for some subclasses of chordal graphs. We also obtain results for Pi_{Kn,n} , the case when M has all the possible edges between G and \bar{G} and for Pi_{PERF}, the case which considers M as a perfect matching. In particular, we show that COMP-SUB(Pi_{PERF}) problem is GI-hard, and we obtain characterizations for this problem when the input graph H is a cograph, a chordal or a distance-hereditary graph. On the other hand, we address three parameters of the geodetic convexity for complementary prisms: the hull number, the geodetic number and the convexity number. We obtain results on the hull number for complementary prisms G\bar{G} when both G e \bar{G} are connected. On the second and third parameter, we show that the decision problems related to the geodetic number and convexity number are NP-complete even restricted to complementary prisms. We also establish lower bounds on the geodetic number for G\bar{G} when G or \bar{G} have simplicial vertices and we determine the convexity number for G\bar{G} when G is disconnected, or G is a cograph.

Descrição

Citação

NASCIMENTO, J. R. Problema de particionamento em subgrafos complementares: complexidade e convexidade. 2019. 129 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal de Goiás, Foiânia, 2019.