Cerâmicas multifuncionais de oxido de zinco dopadas com cobalto: propriedades ópticas, dielétricas e magnéticas

Nenhuma Miniatura disponível

Data

2019-10-23

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Goiás

Resumo

In this work, Zinc oxide Cobalt-doped ceramics (Zn1−xCoxO) were produced with 0,00≤x≤0,05 molar concentrations to obtain multifunctional materials. The Solid State Reaction with slow pressing step and maximum sintering temperature of T=1150ºC was used. Structural characterization by Apparent Density (ρap), Energy Dispersion Spectroscopy (EDS), X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) indicated formation of typical ZnO hexagonal wurtizite phase for all samples (space group - P63mc (C6v)), without formation of spurious phases and good stoichiometric measured coherence. The results also indicated good densification for the ceramics (ρrel=97−91%). The optical characterizations performed by Infrared (FTIR), UV-Vis and Raman allowed the observation of the characteristic vibrational modes of ZnO and the confirmation of the total introduction of Co ions in the tetrahedral sites in the lattice, it also allows the study of evolution in the defects’ amount of VO and Zni type and systematic reduction of optical bandgap Eg due to doping. Electrical characterizations performed by Dielectric Permittivity Spectroscopy (EPD) and Impedance revealed Colossal Dielectric Permittivity (PDC) behavior in all samples (ϵ’~105) and, doping intensifies the effect. The overall dielectric behavior of ceramics is consistent with the Maxwell-Wagner (MW) dielectric relaxation model, which was also used to explain the PDC phenomenon. Magnetic characterizations performed using Magnetic Hysteresis, Zero Field / Field Cooling (ZFC / FC) and Electronic Paramagnetic Resonance (EPR) measurements indicated diamagnetic ordering (DM) in the pure sample and predominant paramagnetic (PM) ordering in the doped samples, as well antiferromagnetic ordering (AFM) in doped samples due to the approximation of Co ions in the lattice (sample x=0,05 - 62%PM×38%AFM). Weak Co-ion spin-orbit coupling has been identified in the presence of the ZnO crystalline field. Non-occurrence of ferromagnetism (FM) was discussed in terms of the defects’ placement in ZnO samples.

Descrição

Citação

PESSONI, H. V. S. Cerâmicas multifuncionais de oxido de zinco dopadas com cobalto: propriedades ópticas, dielétricas e magnéticas. 2019. 152 f. Tese (Doutorado em Física) - Universidade Federal de Goiás, Goiânia, 2019.