Metodologias para verificação da estabilidade térmica e fotoelétrica de estruturas absorvedoras de radiação UV.

Carregando...
Imagem de Miniatura

Data

2011-12-20

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Goiás

Resumo

This work describes the thermal and photoelectric stability investigation of commercial sunscreens benzophenone-3, octyl methoxycinnamate and octyl salicylate. The purpose was determining thermal and photoelectric (resistance to sunlight) stability. For thermal stability evaluation, thermal ramp was set up in attempt to get closer to conditions which sunscreen could be submitted in manufacture or in people using. In this test each filter was exposed to temperature variations from 30 to 65 °C, in times and speeds of heating, under synthetic air atmosphere. A solar simulator was used for photoelectric stability evaluation. The measures were not performed with samples irradiated at a specific wavelength, but exposed to all wavelengths emitted by the sun, extending from the ultraviolet to infrared, with high reproducibility. The samples were exposed to simulated solar light in five different times, ranging from 30 to 120 minutes. This change aims to understand how the filter behaves with the increased exposure time. Infrared, ultraviolet and NMR spectroscopies were used on structural characterization of the compounds submitted to thermal and photoelectrical evaluation. This study has demonstrated that sunscreens evaluated are thermally stable but photoelectrically unstable. This instability was observed by formation of minor compounds derivative of sunscreens studied. The shift in the chemical equilibrium producing higher concentrations of minor compounds was also observed. These factors change the absorptive capacity of the sunscreens, causing loss of stability in solar protection. Octyl methoxycinnamate and benzophenone 3 have the higher molar absorptivity (23,300 and 14,380, respectively) and presented the higher loss of efficiency, overcoming 20% in 2 hours of exposure. On the other hand octyl salicylate has lower molar absorptivity value (4.130) and presented lower loss of efficiency, overcoming 10% in 2 hours of exposure. The used methodologies have low cost and are viable, representing an interesting tool in stability evaluation of sunscreens already established in cosmetic market or in development. This study also emphasizes the importance of NMR technique that enabled us to identify and quantify all structures modified without any previous separation. The correlation between UV and NMR techniques was also effective to demonstrate that lower losses in molar absorptivity are directly related to lower differences on NMR spectra, as observed in octyl salicylate.

Descrição

Citação

LUZIN, R. M. Metodologias para verificação da estabilidade térmica e fotoelétrica de estruturas absorvedoras de radiação UV. 2011. 91 f. Dissertação (Mestrado em Química) - Universidade Federal de Goiás, Goiânia, 2011.