Síntese de nanopartículas de ZnS:Mn por cooprecipitação em meio aquoso: efeito das variáveis de síntese na dopagem e nas propriedades ópticas

Imagem de Miniatura

Data

2015-05-18

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Goiás

Resumo

Manganese-doped ZnS nanoparticles (ZnS:Mn) are attractive quantum dots (QDs) for applications in several areas of science and technology due to its high luminescence and low toxicity. In this work we describe the synthesis of ZnS:Mn nanoparticles by co-precipitation synthesis method in aqueous medium, using acetate and chloride salts as precursors of Zn and Mn ions and sodium sulfide as sulfur precursor. An investigation of the effect of the ions precursor salts was carried auto on the nanoparticles composition, crystal structure and optical properties. Atomic absorption spectroscopy, X-ray photoelectron spectroscopy, UV-visible spectroscopy and spectrofluorometry have been used to characterize the doping status, the crystal structure, and the optical properties of the obtained ZnS:Mn nanoparticles. Using 2.4 – 4.8% Mn to Zn molar ratio in the synthesis were obtained nanoparticles presenting a doped range of 0.3 – 1.2%, for both precursor investigated. It was found a synthesis strategy based on chloride salts, which allowed the preparation of nanoparticles free of chloride ions. The x ray diffraction analysis showed that the zinc blend structure is the only crystalline phase present in the nanoparticles, and the mean size estimated by Debye-Scherrer was in the range of 3 - 5 nm. The photoluminescence spectra (PL) in the range of 350 - 700 nm of the nanoparticles prepared from both precursor salts present only a intense emission at 590 nm (excitation at 335 nm) assigned to the 4T1–6A1 transition within the 3d shell of Mn2+, which indicates that the ZnS nanocrystals were successfully doped. The photoluminescence quantum yields (PL QYs) measured for the nanoparticles were in the range of 1.5 - 3%, which are in the range of that presented in the literature for ZnS:Mn QDs prepared by aqueous synthesis without further surface treatment.

Descrição

Citação

NASCIMENTO NETO, J. A. Síntese de nanopartículas de ZnS:Mn por cooprecipitação em meio aquoso: Efeito das variáveis de síntese na dopagem e nas propriedades ópticas. 2015. 59 f . Dissertação (Mestrado em Química) - Universidade Federal de Goiás, Goiânia, 2015.