Desenvolvimento de células eletroquímicas com impressão 3D e escrita direta em papel para aplicações analíticas e bioanalíticas

Nenhuma Miniatura disponível

Data

2016-06-03

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Goiás

Resumo

This manuscript describes development of batch injection analysis (BIA) cells using a 3D printer as well show the fabrication of pencil draw electrode on paper platform. Bia cells were employed on wall-jet configuration coupled with amperometric system. Bia systems were used to detect a product reaction obtained by paper-microreactor and determine ethanol in whiskey samples. Fabrication process using 3D printer was simple, fast (lower than four hours) and cost effectiveness (ca. $ 3.43 and 1.07 to the 1st and 2nd generation of Bia system, respectively). The 1st generation of Bia cell was production to be couple with commercial screen printed electrodes (SPEs) by DropSens (DropSens, DPR 710 model) and 2nd generation have support to put home-made electrodes. Both Bia cells, present a specific compartment to be coupled the micropipette. Paperbased microreactors (MOPs) were used with the 1st generation of Bia cell and the system was employed to measure glucose through the generation of hydrogen peroxide by the reaction of glucose with glucose oxidase and amperometric detection of H2O2 generated in the reaction at a potential of -0.25 V vs. Ag. In the same way of Bia cell, MOPs fabrication process is simpler, faster and cheaper (ca. $ 0.02 cent each). In general, the system shows a good linear response for concentration range between 1 to 10 mmo L-1. The limit of detection (LD) and quantification (LQ) found were 0.11 mmol L-1 and 0.38 mmol L-1, respectively. Besides, the measure of glucose using five different MOPs presented a good repeatability (RSD between 1.5 to 2.8%) and reproducibility (RSD = 0.66%). The 2nd generation of Bia cell was coupled with copper working electrode modified thermally and chemically. This cell was employed to determine the presence of ethanol in whisky sample using 1 mol L-1 NaOH as supporting electrolyte and potential of 0.45 V vs Ag / AgCl. The modified-electrode shows optimum stability to measure seventy minute of consecutive injection with RSD lower than 4.7%. A good linear response was obtained when concentration of ethanol ranged from 2.5 to 25% (v/v). The LD achieved was ca. 0.07% (v/v). Besides the Bia cells experiments, this work describes the fabrication process of alternative electrodes by hand drawing pencil on paper platform. Initially, the geometry of sensing electrodes was drawn using a graphic software and printed on paper surface. During printing process, toner lines were deposited on paper to delimit the electrode area. Then, the desire layout was draw using a pencil and laminated using benchtop laminator. This last step is necessary to make the electrical insulation. Fabrication process of alternative electrodes was simple, fast (~ 20 minutes) and cost effectiveness (ca. $ 0,023). Characterization of paper electrodes was made by cyclic voltammetry with potassium ferrocyanide (5 mmol L-1) in KCl solution (0.5 mol L-1). Besides, showed good peak separation (ΔEp) ca. 238 mV and excellent reproducibility. The RSD was lower than 2.25% to five different electrodes.

Descrição

Citação

DIAS, A. A. Desenvolvimento de células eletroquímicas com impressão 3D e escrita direta em papel para aplicações analíticas e bioanalíticas. 2016. 85 f. Dissertação (Mestrado em Química) - Universidade Federal de Goiás, Goiânia, 2016.