Desenvolvimento de formulações semissólidas contendo topotecano encapsulado em carreadores lipídicos nanoestruturados para aplicação tópica

Nenhuma Miniatura disponível

Data

2015-09-30

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Goiás

Resumo

Topotecan (TPT) is a potent cytotoxic agent used in the treatment of various tumors, and studies have reported its effectiveness in the treatment of melanoma. Local treatment of melanoma with TPT appears to be a viable alternative since conventional treatments result in scarring, pain, inflammation and possible recurrence. However, the permeation of hydrophilic drugs such as TPT, is quite difficult. The encapsulation of the drug into nanostructured lipid carriers (NLC) may facilitate TPT permeation to deeper skin layers. Therefore, the final formulation shall provide appropriate viscosity for easy application and remain in the desired location. Thus, the objective was to incorporate the CLN-TPT in hydrogels hydroxyethyl cellulose (NLC-TPT-HEC) and chitosan (NLC-TPT-QUIT) and evaluate the skin permeation of the merged formulations or not in gels. NLC were incorporated into the hydrogels and were characterized as mean diameter, polydispersity index (PdI), zeta potential, drug recovery (REC%) and encapsulation efficiency (EE%). The release profiles and in vitro permeation studies were carried out in Franz-type diffusion cells using synthetic membrane and porcine ear skin, respectively. To quantify the TPT, high-performance liquid chromatography (HPLC) was used and a method for its extraction and quantitation in different skin layers was developed. The NLC-TPT-HEC and NLC-TPT-QUIT obtained respectively mean diameters of 117.8 nm and 183.2 nm; PdI of 0.32 and 0.33 and zeta potential -12,0mV and 75,0mV. Approximately 60% of TPT was recovered at the end of the preparation of formulations and EE% remained higher than 85% after the incorporation of the particles in the gels. The NLCTPT-HEC and NLC-TPT-QUIT demonstrated a significantly lower drug release (p <0.05) than the drug incorporated in the hydrogel and in NLC aqueous dispersion, demonstrating a potentiation in controlling the release of TPT. The NLC-TPT formulations CLN-TPT-HEC and CLN-TPT-QUIT increased respectively 1.93, 2.37 and 2.06 times the permeation of the drug into the deeper layers of the skin, compared to unloaded drug in same formulations. The NLCTPT-HEC / QUIT showed a lower permeation of the drug into the deeper skin layers when compared with the CLN-TPT dispersed in water. The controlled release resulted in a lower amount of drug available for permeation. Thus, the formulations allow control of permeation through the control of the drug release, which can meet different needs. The gel QUIT, for example, decreased the amount of drug retained in the EC and increases the amount of TPT permeated to the deeper layers. The developed formulations have potential use for topical treatment of melanoma.

Descrição

Citação

GOMES, J. H. V. Desenvolvimento de formulações semissólidas contendo topotecano encapsulado em carreadores lipídicos nanoestruturados para aplicação tópica. 2015. 79 f. Dissertação (Mestrado em Ciências da Saúde) - Universidade Federal de Goiás, Goiânia, 2015.