Elliptic singular problems with a quadratic gradient term
| dc.creator | Gonçalves, José Valdo Abreu | |
| dc.creator | Melo, Antônio Luiz de | |
| dc.creator | Santos, Carlos Alberto Pereira dos | |
| dc.date.accessioned | 2018-06-12T15:10:38Z | |
| dc.date.available | 2018-06-12T15:10:38Z | |
| dc.date.issued | 2009 | |
| dc.description.abstract | We deal with existence and nonexistence of positive classical solutions to the Dirichlet problem for the quasilinear singular elliptic equation −∆u = λ β(u) |∇u| 2 + Ψ(x) in Ω, where Ω ⊂ R N (N ≥ 3) is a domain with smooth boundary ∂Ω, λ > 0 is a real parameter, β : (0, ∞) → (0, ∞) s→0 is a C 1 -function, possibly singular at zero in the sense that β(s) → ∞, and Ψ : Ω → [0, ∞) is continuous. No monotonicity condition whatsoever is imposed upon β. | pt_BR |
| dc.identifier.citation | GONÇALVES, J. V.; MELO, A. L.; SANTOS, C. A. Elliptic singular problems with a quadratic gradient term. Matemática Contemporânea, Rio de Janeiro, v. 36, p. 107-129, 2009. | pt_BR |
| dc.identifier.uri | http://repositorio.bc.ufg.br/handle/ri/15222 | |
| dc.language.iso | eng | pt_BR |
| dc.publisher.country | Brasil | pt_BR |
| dc.publisher.department | Instituto de Matemática e Estatística - IME (RG) | pt_BR |
| dc.rights | Acesso Aberto | pt_BR |
| dc.subject | Elliptic equations | pt_BR |
| dc.subject | Singular problems | pt_BR |
| dc.subject | Gradient term | pt_BR |
| dc.subject | Lower and upper solutions | pt_BR |
| dc.subject | Fixed points | pt_BR |
| dc.title | Elliptic singular problems with a quadratic gradient term | pt_BR |
| dc.type | Artigo | pt_BR |