Centers of cubic polynomial differential systems
| dc.creator | Anacona Erazo, Gerardo Homero | |
| dc.creator | Freitas, Bruno Rodrigues de | |
| dc.creator | Llibre, Jaume | |
| dc.date.accessioned | 2025-12-30T15:29:46Z | |
| dc.date.available | 2025-12-30T15:29:46Z | |
| dc.date.issued | 2025 | |
| dc.description.abstract | An equilibrium point of a differential system in the plane is a center if there exists a neighborhood of such that is filled with periodic orbits. A difficult classical problem in the qualitative theory of differential systems in the plane is the problem of distinguishing between a focus and a center. In this paper we characterize when the origin of coordinates is a center of the following cubic polynomial differential systems where is an arbitrary nonzero monomial of degree 3. Moreover we provide all topologically different phase portraits when . | |
| dc.identifier.citation | ANACONA, Gerardo H.; FREITAS, Bruno R.; LLIBRE, Jaume. Centers of cubic polynomial differential systems. Communications on Pure and Applied Analysis, Pasadena, v. 24, n. 11, p. 2130-2145, 2025. DOI: 10.3934/cpaa.2025072. Disponível em: https://www.aimsciences.org/article/doi/10.3934/cpaa.2025072. Acesso em: 8 dez. 2025. | |
| dc.identifier.doi | 10.3934/cpaa.2025072 | |
| dc.identifier.issn | 1534-0392 | |
| dc.identifier.issn | e- 1553-5258 | |
| dc.identifier.uri | https://www.aimsciences.org/article/doi/10.3934/cpaa.2025072 | |
| dc.language.iso | eng | |
| dc.publisher.country | Estados unidos | |
| dc.publisher.department | Instituto de Matemática e Estatística - IME (RMG) | |
| dc.rights | Acesso Restrito | |
| dc.title | Centers of cubic polynomial differential systems | |
| dc.type | Artigo |
Arquivos
Licença do Pacote
1 - 1 de 1
Carregando...
- Nome:
- license.txt
- Tamanho:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descrição: