Centers of cubic polynomial differential systems

dc.creatorAnacona Erazo, Gerardo Homero
dc.creatorFreitas, Bruno Rodrigues de
dc.creatorLlibre, Jaume
dc.date.accessioned2025-12-30T15:29:46Z
dc.date.available2025-12-30T15:29:46Z
dc.date.issued2025
dc.description.abstractAn equilibrium point  of a differential system in the plane  is a center if there exists a neighborhood  of  such that  is filled with periodic orbits. A difficult classical problem in the qualitative theory of differential systems in the plane is the problem of distinguishing between a focus and a center. In this paper we characterize when the origin of coordinates is a center of the following cubic polynomial differential systems where  is an arbitrary nonzero monomial of degree 3. Moreover we provide all topologically different phase portraits when .
dc.identifier.citationANACONA, Gerardo H.; FREITAS, Bruno R.; LLIBRE, Jaume. Centers of cubic polynomial differential systems. Communications on Pure and Applied Analysis, Pasadena, v. 24, n. 11, p. 2130-2145, 2025. DOI: 10.3934/cpaa.2025072. Disponível em: https://www.aimsciences.org/article/doi/10.3934/cpaa.2025072. Acesso em: 8 dez. 2025.
dc.identifier.doi10.3934/cpaa.2025072
dc.identifier.issn1534-0392
dc.identifier.issne- 1553-5258
dc.identifier.urihttps://www.aimsciences.org/article/doi/10.3934/cpaa.2025072
dc.language.isoeng
dc.publisher.countryEstados unidos
dc.publisher.departmentInstituto de Matemática e Estatística - IME (RMG)
dc.rightsAcesso Restrito
dc.titleCenters of cubic polynomial differential systems
dc.typeArtigo

Arquivos

Licença do Pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: