Geometric mean curvature lines on surfaces immersed in R3

Carregando...
Imagem de Miniatura

Data

2002

Título da Revista

ISSN da Revista

Título de Volume

Editor

Resumo

Here are studied pairs of transversal foliations with singularities, defined on the Elliptic region (where the Gaussian curvature 1C is positive) of an oriented surface immersed in R3. The leaves of the foliations are the lines of geometric mean curvature, along which the normal curvature is given by K which is the geometric mean curvature of the principal curvatures k1, k2 of the immersion. The singularities of the foliations are the umbilic points and parabolic curves, where k1 = k2 and 1C = 0, respectively. Here are determined the structurally stable patterns of geometric mean curvature lines near the umbilic points, parabolic curves and geometric mean curvature cycles, the periodic leaves of the foliations. The generi-city of these patterns is established. This provides the three essential local ingredients to establish sufficient conditions, likely to be also necessary, for Geometric Mean Curvature Structural Stability. This study, outlined at the end of the paper, is a natural analog and complement for the Arithmetic Mean Curvature and Asymptotic Structural Stability of immersed surfaces studied previously by the authors.

Descrição

Palavras-chave

Citação

GARCIA, Ronaldo Alves; SOTOMAYOR, Jorge. Geometric mean curvature lines on surfaces immersed in R3. Annales de la Faculté des Sciences de Toulouse, Toulouse, v. 11, n. 3, p. 377-401, 2002.