Multi-objective genetic algorithm for competency-based selection of auditing teams

dc.creatorCaetano, Samuel Sabino
dc.creatorFerreira, Deller James
dc.creatorCamilo Júnior, Celso Gonçalves
dc.date.accessioned2018-05-10T17:18:40Z
dc.date.available2018-05-10T17:18:40Z
dc.date.issued2013
dc.description.abstractTo perform an auditing it is necessary to select auditors with certain competences in a given knowledge area. In this work, we present a multi-objective genetic algorithm to select the best auditors to perform a certain auditing. The algorithm involves the competence allocation problem under three different point of views: indispensable competences, dependencies among competences, and auditing budget boundary. We performed a case study where the competence allocation problem is analysed under a combinatorial perspective. The results show that the genetic algorithm proposed reaches better results comparing to random selection method.pt_BR
dc.identifier.citationCAETANO, Samuel Sabino; FERREIRA, Deller James; CAMILO JÚNIOR, Celso Gonçalves. Multi-objective genetic algorithm for competency-based selection of auditing teams. Journal of Software & Systems Development, v. 2013, p. 1-13, 2013.pt_BR
dc.identifier.doi10.5171/2013.369217
dc.identifier.issne- 2166-0824
dc.identifier.urihttp://repositorio.bc.ufg.br/handle/ri/14881
dc.language.isoengpt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentInstituto de Informática - INF (RG)pt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectAuditor’s selectionpt_BR
dc.subjectMeta-heuristicspt_BR
dc.subjectCompetency-based selectionpt_BR
dc.subjectGenetic algorithmspt_BR
dc.titleMulti-objective genetic algorithm for competency-based selection of auditing teamspt_BR
dc.typeArtigopt_BR

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
Artigo - Samuel Sabino Caetano - 2013.pdf
Tamanho:
357.42 KB
Formato:
Adobe Portable Document Format

Licença do Pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: