Subsampled cubic regularization method for finite-sum minimization

dc.creatorGonçalves, Max Leandro Nobre
dc.date.accessioned2026-01-02T11:15:47Z
dc.date.available2026-01-02T11:15:47Z
dc.date.issued2025
dc.description.abstractThis paper proposes and analyses a subsampled Cubic Regularization Method (CRM) for solving finite-sum optimization problems. The new method uses random subsampling techniques to approximate the functions, gradients and Hessians in order to reduce the overall computational cost of the CRM. Under suitable hypotheses, first- and second-order iteration-complexity bounds and global convergence analyses are presented. We also discuss the local convergence properties of the method. Numerical experiments are presented to illustrate the performance of the proposed scheme.
dc.identifier.citationGONÇALVES, Max L. N. Subsampled cubic regularization method for finite-sum minimization. Optimization, Milton Park, v. 74, n. 7, p. 1591-1614, 2025. DOI: 10.1080/02331934.2024.2318258. Disponível em: https://www.tandfonline.com/doi/full/10.1080/02331934.2024.2318258. Acesso em: 11 dez. 2025.
dc.identifier.doi10.1080/02331934.2024.2318258
dc.identifier.issn0233-1934
dc.identifier.issne-1029-4945
dc.identifier.urihttps://www.tandfonline.com/doi/full/10.1080/02331934.2024.2318258
dc.language.isoeng
dc.publisher.countryGra-bretanha
dc.publisher.departmentInstituto de Matemática e Estatística - IME (RMG)
dc.rightsAcesso Restrito
dc.subjectCubic regularization method
dc.subjectSubsampling strategy
dc.subjectIteration-complexity analysis
dc.subjectGlobal convergence
dc.subjectFinite-sum optimization problem
dc.titleSubsampled cubic regularization method for finite-sum minimization
dc.typeArtigo

Arquivos

Licença do Pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: