Limit cycles for singular perturbation problems via inverse integrating factor
| dc.creator | Llibre, Jaume | |
| dc.creator | Medrado, João Carlos da Rocha | |
| dc.creator | Silva, Paulo Ricardo da | |
| dc.date.accessioned | 2018-06-12T14:43:04Z | |
| dc.date.available | 2018-06-12T14:43:04Z | |
| dc.date.issued | 2008 | |
| dc.description.abstract | In this paper singularly perturbed vector fields X ε defined in R 2 are discussed. The main results use the solutions of the linear partial differential equa- tion X ε V = div(X ε )V to give conditions for the existence of limit cycles converging to a singular orbit with respect to the Hausdorff distance. | pt_BR |
| dc.identifier.citation | LLIBRE, Jaume; MEDRADO, João C. R.; SILVA, Paulo R. da. Limit cycles for singular perturbation problems via inverse integrating factor. Boletim da Sociedade Paranaense de Matemática, Maringá, v. 26, p. 41-52, 2008. | pt_BR |
| dc.identifier.issn | 0037-8712 | |
| dc.identifier.issn | e- 2175-1188 | |
| dc.identifier.uri | http://repositorio.bc.ufg.br/handle/ri/15221 | |
| dc.language.iso | eng | pt_BR |
| dc.publisher.country | Brasil | pt_BR |
| dc.publisher.department | Instituto de Matemática e Estatística - IME (RG) | pt_BR |
| dc.rights | Acesso Aberto | pt_BR |
| dc.subject | Limit cycles | pt_BR |
| dc.subject | Vector fields | pt_BR |
| dc.subject | Singular perturbation | pt_BR |
| dc.subject | Inverse integrating factor | pt_BR |
| dc.title | Limit cycles for singular perturbation problems via inverse integrating factor | pt_BR |
| dc.type | Artigo | pt_BR |