Geometric singular perturbation on a positive measure minimal set of a planar piecewise smooth vector field

dc.creatorCarvalho, Tiago de
dc.creatorGonçalves, Luiz Fernando
dc.creatorFreitas, Bruno Rodrigues de
dc.date.accessioned2025-12-30T13:11:13Z
dc.date.available2025-12-30T13:11:13Z
dc.date.issued2025
dc.description.abstractIn this paper, we employ the geometric theory of singular perturbations to obtain detailed insights concerning a class of piecewise smooth vector fields exhibiting a positive measure minimal set. The canonical form used in our analysis represents a larger class of piecewise smooth systems, encompassing models of discontinuous harmonic oscillators. Through a desingularization process, which entails the application of a -regularization function along with successive weighted blow-ups (directional, spherical and polar), we obtain an attractor for the trajectories of the desingularized vector field .
dc.identifier.citationCARVALHO, Tiago; GONCALVES, Luiz Fernando; FREITAS, Bruno Rodrigues. Geometric singular perturbation on a positive measure minimal set of a planar piecewise smooth vector field. Nonlinear Analysis: hybrid systems, Amsterdam, v. 58, e101628, 2025. DOI: 10.1016/j.nahs.2025.101628. Disponível em: https://www.sciencedirect.com/science/article/pii/S1751570X25000548. Acesso em: 8 dez. 2025.
dc.identifier.doi10.1016/j.nahs.2025.101628
dc.identifier.issn1751-570X
dc.identifier.issne- 1878-7460
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S1751570X25000548
dc.language.isoeng
dc.publisher.countryHolanda
dc.publisher.departmentInstituto de Matemática e Estatística - IME (RMG)
dc.rightsAcesso Restrito
dc.subjectDiscontinuous differential system
dc.subjectMinimal set
dc.subjectSingular perturbation
dc.titleGeometric singular perturbation on a positive measure minimal set of a planar piecewise smooth vector field
dc.typeArtigo

Arquivos

Licença do Pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: