A proximal gradient method with an explicit line search for multiobjective optimization

dc.creatorBello-Cruz, Yunier
dc.creatorMelo, Jefferson Divino Gonçalves de
dc.creatorPrudente, Leandro da Fonseca
dc.creatorSerra, Ray Victor Guimarães
dc.date.accessioned2025-12-30T14:43:32Z
dc.date.available2025-12-30T14:43:32Z
dc.date.issued2025
dc.description.abstractWe present a proximal gradient method for solving convex multiobjective optimization problems, where each objective function is the sum of two convex functions, one of which is assumed to be continuously differentiable. The algorithm incorporates a backtracking line search procedure that requires solving only one proximal subproblem per iteration, and is exclusively applied to the differentiable part of the objective functions. Under mild assumptions, we show that the sequence generated by the method converges to a weakly Pareto optimal point of the problem. Additionally, we establish an iteration complexity bound by proving that the method finds an -approximate weakly Pareto point in at most iterations. Numerical experiments illustrating the practical behavior of the method are presented.
dc.identifier.citationBELLO-CRUZ, Y.; MELO, J. G.; PRUDENTE, L. F.; SERRA, R. V. G. A proximal gradient method with an explicit line search for multiobjective optimization. Computational Optimization and Applications, Berlin, v. 92, p. 437–469, 2025. DOI: 10.1007/s10589-025-00711-x. Disponível em: https://link.springer.com/article/10.1007/s10589-025-00711-x. Acesso em: 10 dez. 2025.
dc.identifier.doi10.1007/s10589-025-00711-x
dc.identifier.issn0926-6003
dc.identifier.issne- 1573-2894
dc.identifier.urihttps://link.springer.com/article/10.1007/s10589-025-00711-x
dc.language.isoeng
dc.publisher.countryAlemanha
dc.publisher.departmentInstituto de Matemática e Estatística - IME (RMG)
dc.rightsAcesso Restrito
dc.titleA proximal gradient method with an explicit line search for multiobjective optimization
dc.typeArtigo

Arquivos

Licença do Pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: