The generalized fractional KdV equation in weighted Sobolev spaces

dc.creatorCunha, Alysson Tobias Ribeiro da
dc.creatorRiaño Castañeda, Oscar Guillermo
dc.date.accessioned2025-12-30T12:48:44Z
dc.date.available2025-12-30T12:48:44Z
dc.date.issued2025
dc.description.abstractThis work concerns the study of the persistence property in polynomial weighted spaces for solutions of the generalized fractional KdV equation in any spatial dimension . By establishing well-posedness results in conjunction with some asymptotic at infinity unique continuation principles, it is verified that dispersive effects and dimensionality mainly determine the maximum spatial decay allowed by solutions of this model. In particular, we recover and extend some known results on weighted spaces for different models, such as the Benjamin-Ono equation and the dispersion generalized Benjamin-Ono equation. The estimates obtained for the linear equation seem to be of independent interest, and they are useful to obtain persistence properties in weighted spaces for models with different nonlinearities as the fractional KdV equation with combined nonlinearities.
dc.identifier.citationCUNHA, Alysson; RIAÑO, Oscar. The generalized fractional KdV equation in weighted Sobolev spaces. Communications on Pure and Applied Analysis, Pasadena, v. 24, n. 2, p. 189-227, 2025. DOI: 10.3934/cpaa.2024085. Disponível em: https://www.aimsciences.org/article/doi/10.3934/cpaa.2024085. Acesso em: 8 dez. 2025.
dc.identifier.doi10.3934/cpaa.2024085
dc.identifier.issn1534-0392
dc.identifier.issne- 1553-5258
dc.identifier.urihttps://www.aimsciences.org/article/doi/10.3934/cpaa.2024085
dc.language.isoeng
dc.publisher.countryEstados unidos
dc.publisher.departmentInstituto de Matemática e Estatística - IME (RMG)
dc.rightsAcesso Restrito
dc.titleThe generalized fractional KdV equation in weighted Sobolev spaces
dc.typeArtigo

Arquivos

Licença do Pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: