Invariant manifolds of 3D piecewise vector fields

dc.creatorFreitas, Bruno Rodrigues de
dc.creatorFerreira, Samuel Carlos de Souza
dc.creatorMedrado, João Carlos da Rocha
dc.date.accessioned2025-12-30T13:17:21Z
dc.date.available2025-12-30T13:17:21Z
dc.date.issued2025
dc.description.abstractWe analyze a 3D piecewise linear dynamical system  with a plane Σ as its switching manifold containing two-fold parallel straight lines. The eigenvalues associated with X and Y are composed of two complex eigenvalues and one non-zero real eigenvalue. Using a suitable canonical form and exponential matrices theory, we generate two closing equations, from which we derive two half-return Poincaré maps. By defining the displacement map as the difference between the two half-return Poincaré maps from the same point, we prove using the Weierstrass preparation theorem that there exists a 3D piecewise linear dynamical system that admits three invariant cylinders of big amplitude, with exactly one limit cycle in each cylinder, a surface cone-like cylinder, and a cylinder filled with closed orbits. Lastly, we provide examples of 3D piecewise linear dynamical systems that present three limit cycles, a cone-like surface, and a cylinder filled with closed orbits, respectively.
dc.identifier.citationFREITAS, Bruno R.; FERREIRA, Samuel C. S.; MEDRADO, João C. R. Invariant manifolds of 3D piecewise vector fields. Journal of Differential Equations, Amsterdam, v. 435, e113313, 2025. DOI: 10.1016/j.jde.2025.113313. Disponível em: https://www.sciencedirect.com/science/article/pii/S0022039625003407. Acesso em: 8 dez. 2025.
dc.identifier.doi10.1016/j.jde.2025.113313
dc.identifier.issn0022-0396
dc.identifier.issne- 1090-2732
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0022039625003407
dc.language.isoeng
dc.publisher.countryHolanda
dc.publisher.departmentInstituto de Matemática e Estatística - IME (RMG)
dc.rightsAcesso Restrito
dc.titleInvariant manifolds of 3D piecewise vector fields
dc.typeArtigo

Arquivos

Licença do Pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: