A refined proximal algorithm for nonconvex multiobjective optimization in Hilbert spaces
Carregando...
Data
Título da Revista
ISSN da Revista
Título de Volume
Editor
Resumo
This paper is devoted to general nonconvex problems of multiobjective optimization in Hilbert spaces. Based on limiting/Mordukhovich subgradients, we define a new notion of Pareto critical points for such problems, establish necessary optimality conditions for them, and then employ these conditions to develop a refined version of the vectorial proximal point algorithm providing its detailed convergence analysis. The obtained results largely extend those initiated by Bonnel et al. [SIAM J Optim, 15 (2005), pp. 953–970] for convex vector optimization problems, specifically in the case where the codomain is an m-dimensional space and by Bento et al. [SIAM J Optim, 28 (2018), pp. 1104-1120] for nonconvex finite-dimensional problems in terms of Clarke’s generalized gradients.
Descrição
Palavras-chave
Citação
BENTO, G. C.; CRUZ NETO, J. X.; LOPES, J. O.; MORDUKHOVICH, B. S.; SILVA FILHO, P. R. A refined proximal algorithm for nonconvex multiobjective optimization in Hilbert spaces. Journal of Global Optimization, Berlin, v. 92, p. 187-203, 2025. DOI: 10.1007/s10898-024-01453-6. Disponível em: https://link.springer.com/article/10.1007/s10898-024-01453-6. Acesso em: 9 dez. 2025.