Quasilinear elliptic problems via nonlinear rayleigh quotient

dc.creatorCarvalho, Marcos Leandro Mendes
dc.creatorGasiński, Leszek
dc.creatorSantos Júnior, João Rodrigues dos
dc.creatorSilva, Edcarlos Domingos da
dc.date.accessioned2026-01-02T11:11:50Z
dc.date.available2026-01-02T11:11:50Z
dc.date.issued2025
dc.description.abstractIt is established existence and multiplicity of solution for the following class of quasilinear elliptic problems:{−ΔΦu = 𝜆a(x)|u|q−2u + |u|p−2u, x ∈ Ω,u = 0, x ∈ 𝜕Ω,where Ω ⊂ ℝN, N ≥ 2, is a smooth bounded domain, 1 < q < 𝓁 ≤ m < p < 𝓁∗ and Φ : ℝ → ℝ is suitable N-function.The main feature here is to show whether the Nehari method can be applied to find the largest positive number 𝜆∗ > 0in such a way that our main problem admits at least two distinct solutions for each 𝜆 ∈ (0, 𝜆∗ ). Furthermore, using somefine estimates and some extra assumptions on Φ, we prove the existence of at least two positive solutions for 𝜆 = 𝜆∗and 𝜆 ∈ (𝜆∗, 𝜆) where 𝜆 > 𝜆∗
dc.identifier.citationCARVALHO, Marcos L. M.; GASINSKI, Leszek; SANTOS JUNIOR, João R.; SILVA, Edcarlos D. Quasilinear elliptic problems via nonlinear rayleigh quotient. Asymptotic Analysis, Newcastle, v. 145, n. 3, p. 1706-1730, 2025. DOI: 10.1177/09217134251330366. Disponível em: https://journals.sagepub.com/doi/full/10.1177/09217134251330366. Acesso em: 11 dez. 2025.
dc.identifier.doi10.1177/09217134251330366
dc.identifier.issn0921-7134
dc.identifier.issne- 1875-8576
dc.identifier.urihttps://journals.sagepub.com/doi/full/10.1177/09217134251330366
dc.language.isoeng
dc.publisher.countryGra-bretanha
dc.publisher.departmentInstituto de Matemática e Estatística - IME (RMG)
dc.rightsAcesso Restrito
dc.subjectQuasilinear elliptic problems
dc.subjectConcave–convex nonlinearities
dc.subjectNonhomogeneous operators
dc.subjectNehari method
dc.subjectRayleighquotien
dc.titleQuasilinear elliptic problems via nonlinear rayleigh quotient
dc.typeArtigo

Arquivos

Licença do Pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: