Ricci tensors with rotational symmetry on lR n 1
| dc.creator | Garcia, Ronaldo Alves | |
| dc.creator | Pina, Romildo da Silva | |
| dc.date.accessioned | 2018-06-13T15:55:32Z | |
| dc.date.available | 2018-06-13T15:55:32Z | |
| dc.date.issued | 2003 | |
| dc.description.resumo | ln this paper is considered the differential equa- tion Ric(g) = T, where Ric(g) is the Ricci tensor of the metric 9 and T is a rotational symmetric tensor on lR n . A new, geometric, proof of the existence of smooth solutions of this equation, based on qualitative theory of implicit differ- ential equations, is presented here. This result was obtained previously by DeTurck and Cao in 1994. | pt_BR |
| dc.identifier.citation | GARCIA, Ronaldo A.; PINA, Romildo S. Ricci tensors with rotational symmetry on Rn1. Resenhas do Instituto de Matemática e Estatística da Universidade de São Paulo, São Paulo, v. 6, n. 1, p. 74-84, 2003. | pt_BR |
| dc.identifier.issn | 2357-9331 | |
| dc.identifier.uri | http://repositorio.bc.ufg.br/handle/ri/15246 | |
| dc.language.iso | eng | pt_BR |
| dc.publisher.country | Brasil | pt_BR |
| dc.publisher.department | Instituto de Matemática e Estatística - IME (RG) | pt_BR |
| dc.rights | Acesso Aberto | pt_BR |
| dc.subject | Ricci tensor | pt_BR |
| dc.subject | lmplicit differential equation | pt_BR |
| dc.subject | Rotational sym metry | pt_BR |
| dc.subject | Potential function | pt_BR |
| dc.title | Ricci tensors with rotational symmetry on lR n 1 | pt_BR |
| dc.type | Artigo | pt_BR |