Avaliação da ação de nanopartículas magnéticas na função cardiovascular de ratos
Nenhuma Miniatura disponível
Data
2014-02-27
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de Goiás
Resumo
Magnetic Nanoparticles (MNPs) have been used for various biomedical applications. Importantly,
manganese ferrite-based nanoparticles have a useful magnetic resonance imaging characteristics
and potential for magnetic hyperthermia treatment, but their effects in the cardiovascular system
are poorly reported. Thus, the objectives of this study were to determine the cardiovascular effects
of four different types of manganese ferrite-based nanoparticles: albumin-coated (MnFe2O4
Albumin); citrate-coated (MnFe2O4 Citrate); tripolyphosphate-coated (MnFe2O4 Phosphate); and
bare nanoparticles (MnFe2O4 Ionic). The direct effects of the MNPs on cardiac contractility were
evaluated in isolated perfused rat hearts. The MnFe2O4 Citrate, but not MnFe2O4 Phosphate and
MnFe2O4 Ionic induced a transient decreased in the Left Ventricular End Systolic Pressure. The
MnFe2O4 Phosphate and MnFe2O4 Ionic, but not MnFe2O4 Citrate induced an increase in Left
Ventricular End Diastolic Pressure which resulted decrease in a Left Ventricular End Developed
Pressure. Indeed, MnFe2O4 Phosphate and MnFe2O4 Ionic also caused a decrease in the
maximum dP/dt and minimum dP/dt. The three MNPs studied induced an increase in the perfusion
pressure of isolated hearts. It is important to note that the ionic nanoparticle induced more
significant changes in cardiac function. Interestingly, coating the bare nanoparticles with albumin
reverted the MnFe2O4 Ionic-induced cardiac effects. MnFe2O4 Ionic, but not MnFe2O4
Phosphate or MnFe2O4 Citratre, induced a slight vasorelaxant effect in the isolated aortic rings.
None of the MNPs were able to change heart rate or arterial blood pressure in conscious rats. In
summary, the responses on ventricular function were found to be strongly dependent upon the
surface nanoparticles coating layer. Also, although the MNPs were able to induce effects ex vivo,
no significant changes were observed in vivo. Thus, given the proper dosages, these MNPs should
be considered for possible therapeutic applications.
Descrição
Palavras-chave
Citação
NUNES, A. D. C. Avaliação da ação de nanopartículas magnéticas na função cardiovascular de ratos. 2014. 66 f. Dissertação (Mestrado em Biologia) - Universidade Federal de Goiás, Goiânia, 2014.