Síntese, caracterização e estudo das propriedades magnéticas de CoFe(2-x)YxO4, 0≤x≤0,05, produzidas por reação de combustão

dc.contributor.advisor1Franco Júnior, Adolfo
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/0187547195548392por
dc.contributor.referee1Ruggiero, Marçal Antonio
dc.contributor.referee2Gomes, Danielle Cangussu de Castro
dc.creatorNascimento, Thaísa Cardoso
dc.creator.Latteshttp://lattes.cnpq.br/4305335200268968por
dc.date.accessioned2014-09-26T20:05:53Z
dc.date.issued2013-07-23
dc.description.abstractCompounds of CoFe(2-x)YxO4, with 0 x 0.05, were synthesized by combustion reaction. On the synthesis we used as oxidizing reagents, iron nitrate Fe(NO3)3.9H2O, cobalt nitrate Co(NO3)2.6H2O, yttrium nitrate Y(NO3)3.6H2O and as a fuel reducer, was used urea CO(NH2)2 with 300% in excess. Post nanometric of cobalt ferrite in the spinel structure was obtained, wich formed crystalline aggregates, with crystallite average size of 20 ± 3 nm. The results of X-ray diffraction showed well defined diffraction peaks characteristic of the pure phase CoFe2O4, not showing secondary phase for all the compounds stoichiometries. The infrared spectra showed bands characteristic of the metal and the oxygen bonds in the octahedral and tetrahedral sites around 590-600 cm-1 and 400 cm-1 respectively, as well as, shifting of the same to higher frequencies, also showed bands relating to residual compounds bonds of the synthesis stage, that was eliminated during the heating to obtain the thermograms. The thermograms showed the material chemical stability and the residual compounds elimination and the crystallization of the same starting at 400°C. The micrographs achieved through transmission electron microscopy showed crystalline agglomerates and using the program Image J. was possible to make 301 counts of the particles diameters and to obtain a mean value for the sample x = ~ 1.5% of 18.58 nm, close to that obtained by the Scherrer equation, which for this sample was ~19 nm. The scanning electron microscopy via Energy Dispersive Spectrometer (EDS) was used to determine the chemical composition of the experimental material, and along with the stoichiometric calculate the values were tabulated. The data exposed in the table showed an agreement with the calculated values whit the obtained. The magnetic analysis revealed that the samples show the typical ferrimagnetism of the compound nature dependent of the Y3+ concentration.eng
dc.description.provenanceSubmitted by Jaqueline Silva (jtas29@gmail.com) on 2014-09-26T20:05:43Z No. of bitstreams: 2 Nascimento, Thaísa Cardoso-2013-dissertação.pdf: 5562960 bytes, checksum: 3da89e8903269de85813600afded8dde (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)eng
dc.description.provenanceApproved for entry into archive by Jaqueline Silva (jtas29@gmail.com) on 2014-09-26T20:05:53Z (GMT) No. of bitstreams: 2 Nascimento, Thaísa Cardoso-2013-dissertação.pdf: 5562960 bytes, checksum: 3da89e8903269de85813600afded8dde (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)eng
dc.description.provenanceMade available in DSpace on 2014-09-26T20:05:53Z (GMT). No. of bitstreams: 2 Nascimento, Thaísa Cardoso-2013-dissertação.pdf: 5562960 bytes, checksum: 3da89e8903269de85813600afded8dde (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2013-07-23eng
dc.description.resumoCompostos de CoFe(2-x)YxO4, com 0 x 0,05, foram sintetizados por reação de combustão. Na síntese foram empregados como reagentes oxidantes; nitrato de ferro, Fe(NO3)3.9H2O, nitrato de cobalto Co(NO3)2.6H2O, nitrato de ítrio Y(NO3)3.6H2O e como redutor, combustível, foi usado uréia CO(NH2)2 com 300% em excesso. Pós nanométricos de ferritas de cobalto na estrutura de espinélio foram obtidos, formaram agregados cristalinos, com tamanho médio dos cristalitos de 20 ± 3 nm. Os resultados de Difração de raios X mostraram os picos de difração bem definidos característicos da fase de CoFe2O4 pura, não apresentando fase secundária para todas as estequiometrias do composto. Os espectros de infravermelho mostraram as bandas característica das ligações metal e oxigênio nos sítios tetraédricos e octaédricos em torno 590-600 cm-1 e 400 cm-1 respectivamente, bem como deslocamento das mesmas para freqüências maiores, apresentaram também bandas referente a ligações de compostos residuais da etapa de síntese eliminados durante o aquecimento para obtenção dos termogramas. Os termogramas mostraram a estabilidade química do material, a eliminação de compostos residuais e a cristalização do mesmo a partir de 400°C. As micrografias obtidas através da microscopia eletrônica de transmissão mostraram aglomerados cristalinos e através do programa Image J. foi obtido o valor médio dos diâmetros das partículas para a amostra x=1,5% de ~19±6 nm, próximo ao obtido pela equação de Scherrer, que para a referida amostra foi de ~19±3 nm. A microscopia eletrônica de varredura através do Espectrômetro de Energia Dispersiva (EDS) foi usado para determinar a composição química experimental do material e juntamente com o calculado estequiometricamente os valores foram tabelados. Os dados exposto na tabela mostraram uma concordância dos valores calculados com os obtidos. As análises magnéticas revelaram que as amostras apresentam ferrimagnetismo característico da natureza do composto dependente da concentração de Y3+.por
dc.formatapplication/pdf*
dc.identifier.citationNASCIMENTO, Thaísa Cardoso. Síntese, caracterização e estudo das propriedades magnéticas de CoFe(2-x)YxO4, 0≤x≤0,05, produzidas por reação de combustão. 2013. 76 f. Dissertação (Mestrado em Química) - Universidade Federal de Goiás, Goiânia.por
dc.identifier.urihttp://repositorio.bc.ufg.br/tede/handle/tede/3192
dc.languageporpor
dc.publisherUniversidade Federal de Goiáspor
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Química - IQ (RG)por
dc.publisher.initialsUFGpor
dc.publisher.programPrograma de Pós-graduação em Química (IQ)por
dc.relation.referencesBAHADUR, D. Current trends in aplications of magnetic ceramic materials. bulletin of material science , 15, 431-439, 1992. BERKOWITZ, A. S. Magnects Properties of Some Ferrite Micropowdes. J. Appl. Phys. 134, 1959. CALLISTER Jr, W. Fundamento da Engenharia dos Materiais. Rio de Janeiro: LTD, 2004. CHANDRASEKARAN, G., & Nimy SEBASTIAN, P. Magnetic study of ZnxMg1-xFe2O4 mixed ferrites. Materials Letters , 37, p. 17-20, 1998. CHOIA, E. J. et al. Cation Distribution and Spin-Canted Structure in Cobalt Ferrite Particles from a Cobalt-Irion Hydroxide Carbonete Complex. Journal of the Korean Physical Society, v. 44, n 6, p. 1518-1520, 2006. COSTA, A. C. F. M.; TORTELLA E.; MORELLI M. R; M. KAUFMAN, KIMINAMI R.H.; Effect of heating conditions during combustion synthesis on the characteristics of Ni0.5Zn0.5Fe2O4nanopowders. J. Mater. Sci.37, 3569, 2002. COSTA, A. C. F. M.; MORELLI, M. R.; KIMINAMI, R. H.; Combustion Synthesis Processing of Nanoceramics. Handbook of Nanoceramicsand Their Based Nanodevices. Ed. American Scientific Publishersaccept, 2007. CORNEJO D. R.; MEDINA-BOUDRI A.; BERTORELLO H. R.; MATUTESAQUINO J.; MAGN. MAGN. MATER.Magnetization reversal in coprecipitated cobalt ferrite.242,194, 2002. CULLITY, B. D. Elements of X-ray difraction. Notre Dame, Indiana: Addison- Wesley publishing company, Inc. 1956. CULLITY, B. D. & GRAHAM, C. D. Introduction to Magnetic Materials (Second Edition ed.). Hoboken: John Wiley & Sons, Inc., 2009. FONER, S. The vibrating sample magnetometer: Experiences of a volunteer. Journal of Applied Physics , 79 , p. 4740-4745, 1996. FONER, S. Determine MH by Vibration Magnetometer, 1955. FOUNDING, A. Editor James A. Schwarz. DEKKER Encyclopedia of Nanoscience And Nanotechnology (2ª Edição ed., Vol. 3). (C. I. Contescu, & K. Putyera, Eds.) Taylor & Francis Group. 2008. FRANCO JR, A. Synthesis of nanoparticles of CoxFe(3-x)O4 (0,5< x < 1,5) by combuston reaction method. Journal of Magnetism and Magnetic Materials , 308, pp. 198-202, 2007. FRANCO JUNIOR, A. Enhanced Magnetization of nanoparticles of MgxFe(3- x)O4 (0,5 x 1,5) synthesized by combuston reaction. Applied Physics A: Materials Science & Processing. v. 94, p. 131-137, 2009. FUMO, D. A., Morelli, M. R., & Segadães, M. A. Combustion synthesis of calcium aluminates. Materials Research Bulletin , 31, pp. 1243-1255, 1996. FUMO, D. A.; JURADO, J. R., SEGADÃES, A. M.; & FRADE, J. R. Combustion syntesis of irion-substituted strontium titanate perovskites. Materials Research Bulletin. v. 32, p. 1459- 1470, 1997. GOLDMAN, A. Modern Ferrite Technology, 2nd Ed. Pittsburgh: Springer, 2006. GOPAL, R. C., Manorama, S., & Rao, V. J. Preparation and characterization of ferrites as gas sensor materials. Journal of Materials Science Letters , 19, pp. 775–778, 2000. GRIGOROVA M. Magnetic Properties and Mossbauer Spectra of Nanosize CoFe2O4 Powders. J. Mang. Mang Mater. 163, 1998. HATAKEYAMA, T.; LIU, Z. Handbook of Thermal Analisys. Chichester: John Wiley e Sons, p. 452, 1998. HOFLMANN, E. A. Environmental Applications of Semiconductor Photocatalysis,. Chemical Reviews , 1995. HOLLAND, T. & REDFERN, S. Retrieved from UNITCELL: http://www.ccp14.ac.uk/ccp/ccp14/ftp-mirror/crush/pub/minp/UnitCell/. 2006 JAIN, S. R.; ADIGA, K. C.; PAI VERNEKER; V. A. New approagh to termochemical calculations of condensed fuel – oxidizer mixture.Combustion and flame, v.40, p. 71-79, 1981. KODAMA, R. M et al. Surface spin disorder in NiFe2O4 nanoparticles. Physical Review Letters, v. 77, p. 394-397, 1996. KIMINAMI, J. K. (2001). Powder Part. 156, 2001. Kingery, W. D., Bowen, H. K., & Uhlmann, D. R. Introduction to Ceramics. New York: John Wiley and Sons, 1976. LEE, J. G., PARK,J. Y., OH, Y. J.,KIM, C. S. Magnetic properties of CoFe2O4 thin films prepared by a sol-gel method. J. Appl. Phys,n.84, 2801, 1998. LIU, C.; RONDIONE, A. J.; ZHANG, Z. J. Synthesis of magnetic spinel ferrite CoFe2O4 nanoparticles from ferric salt and characterization of the size dependent superparamagnetic properties. Pure Applied Chemistry, v. 72, p. 37-45, 2000. LIU, Y. L. et al. Simple synthesis of MgFe2O4 nanoparticles as gas sensing materials. Sensors and Actuators B., v 18, p. 600-604, 2000. MELIKHOV,Y., SNYDER, J. E., JILES, D. C.,RING, A. P.,PAULSEN, J. A., et al. Temperature dependence of magnetic anisotropy in Mn-substituted cobalt ferrite.J. Appl. Phys. 99, 08R102, 2006. MELIKHOV, Y., SNYDER, J. E., C. C. H. Lo, P. N. MATLAGE, P. N.,SONG,S. H., DENNIS, K. W., and JILES, D. C.The Effect of Cr-Substitution on the Magnetic Anisotropy and Its Temperature Dependence in Cr-Substituted Cobalt Ferrite. IIEEE trans. Magn.42, 4861, 2006. MONEY, E. K.; NETSON, J. A. e WGNER, M. J. Chem Mater. Superparamagnetic Cobalt Ferrite Nanocrystals Synthesized by Alkalide Reduction.16, 3155, 2004. MOORE, J. Combustion synthesis of advanced Materials: Part 1. Reaction parameters. Progress in Materials Science , 39, 1995. MOUALLEM-BAHOUT, M., BERTRAND, S., & PEÑA, O. Synthesis and characterization of Zn1-xNixFe2O4 spinels prepared by a citrate precursor. Journal of Solid State Chemistry , 178, pp. 1080-1086, 2005. NATIONAL SCIENCE AND TECNOLOGY COUNCIL. Nanotechnology Research Directions: IWGN Worksshop Report. Washington: NSTC, 1999. NLEBEDIM, I. C., RANVAH, N.,MELIKHOV, Y.,WILLIANS, P. I.,SNYDER, J.E.,MOSES, A. J., and JILES, D. C.Effect of temperature variation on the magnetostrictive properties of CoAlxFe2-xO4. J. Appl. Phys. 107, 936, 2010. O'HANDLEY, R. C. Modern Magnetic Materials. New York: Wiley-Interscience Publication John Wiley & Sons, 2000. PATIL, K. C. & Sekar, M. M. Combustion Synthesis and Properties of Fineparticle Dielectric Oxide Materials. Journal of Materials Chemistry , 2(7), pp. 739-743, 1992. RAJENDRAN, M.; PULLA, R. C.; BHATTACHARYA, A. K.; DAS, D.; CHINTALAPUDI, S. N.; MAJUMDAR, C.K. Magnetic properties of nanocrystalline CoFe2O4 powders prepared at room temperature: variation with crystallite sizeJ. MAGN. MAGN.MATER. 232, 71, 2001. RESENDE, S. M. NANOMAGNETISMO. NANOCIÊNCIA & NANOTECNOLOGIA, 2002. RESENDE, S. M. Componentes Eletronicos. São Paulo: Livraria da Física, 2007. RONDIONE, A. J.; SAMIA, A. C.; ZHANG. Z. J. Characterizing the magnetic anisotropy constant of spinel cobalt ferrite nanoparticles. Applied Physics letters. V. 76, n 24, p. 3624-3626, 2000. SAMPAIO, C. L. (2000). Tecnicas de Magnetometria. Revista Brasileira de Ensino de Fisica, v. 22, 2000. SHANNON, R. D., Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallographica. A 32, p. 751-767, 1976. SILVERSTEIN, R. Identificação Espectrométrica de Compostos Orgânicos. Rio de Janeiro: Guanabara Dois, 1979. SKOOG, D. A., Holler, F. J., & Nieman, T. A. Princípios de Análise Instrumental. 5 . Porto Alegre: Bookman, 2002. SUGIMOTO, M. (1999). The Past, Present, and Future of Ferrites. Journal of the American Ceramic Society, v. 82 , p. 269-280, 1999. SUN, C. Q. Size dependence of nanostructures: Impact of bond order deficience. Progress in Solid State Chemistry, v. 35, p. 1-159, 2007. WALDRON, R. Infrared spectra of ferrites. Physical Review, v. 99, 1955. WARREN, B. E. X-Ray Diffraction. Dover, New York: addison wesley, 1990. YAN, H. C. Nanophased CoFe2O4 prepared by combustion method. Solid State Communications, v. 11, 1999. ZHANG, B. Ferromagnetic modification of ZnO by Fe3+ ions implantation. Nuclear Instruments and Methods in Physics Research B., v. 266, p. 4891- 4895, 2000.por
dc.rightsAcesso Abertopor
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectMicroscopia eletrônica de varredorapor
dc.subjectFerritapor
dc.subjectRaios X – Difraçãopor
dc.subjectEspectroscopia no infravermelhopor
dc.subject.cnpqQUIMICA::QUIMICA ANALITICApor
dc.thumbnail.urlhttp://repositorio.bc.ufg.br/tede/retrieve/8830/Nascimento%2c%20Tha%c3%adsa%20Cardoso-2013-disserta%c3%a7%c3%a3o.pdf.jpg*
dc.titleSíntese, caracterização e estudo das propriedades magnéticas de CoFe(2-x)YxO4, 0≤x≤0,05, produzidas por reação de combustãopor
dc.title.alternativeSynthesis, characterization and studies of magnetic properties of CoFe(2-x)YxO4, 0≤x≤0,05, produced by combustion reactioneng
dc.typeDissertaçãopor

Arquivos

Pacote Original
Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
Nascimento, Thaísa Cardoso-2013-dissertação.pdf
Tamanho:
5.31 MB
Formato:
Adobe Portable Document Format
Descrição:
Licença do Pacote
Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
2.11 KB
Formato:
Item-specific license agreed upon to submission
Descrição: