Regulação do metabolismo de ferro em função do pH e caracterização da produção de sideróforos em Staphylococcus saprophyticus

Nenhuma Miniatura disponível

Data

2018-03-08

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Goiás

Resumo

Staphylococcus saprophyticus is a coagulase negative bacteria that is part of the human microbiota and may also be present in surfaces, food and the environment. It can act as a pathogen causing urinary tract infections (UTIs) in humans. The ability to capture micro and macro nutrients is related to the ability to survive and establish infection in pathogenic microorganisms. One of the micronutrients is iron, which can be acquired by microorganisms through secret siderophores or iron-reducing system on the cell surface. When S. saprophyticus infection is initiated the bacteria causes changes in the medium, resulting in a change in the pH of the urine. Iron can be found in soluble form (Fe 2+) in higher concentration at acid pH, and insoluble (Fe 3+) in higher concentration at basic pH. In this study, the proteomic profile of S. saprophyticus when grown at acidic and basic pH was evaluated. The results demonstrate that S. saprophyticus respond to the instances of modulating the pH of proteins related to iron metabolism. A siderophores production capacity by S. saprophyticus was also investigated after culturing in minimal SSD medium without iron. The results demonstrate that this bacteria produces siderophores of the carboxylate type when cultivated in the absence of iron. Phagocytosis assays in macrophages demonstrate that S. saprophyticus is more susceptible to death after infection when they are deprived of iron, demonstrating that this element is important to ensure infection. The present study increased the knowledge of the proteomic and metabolic flexibility of S. saprophyticus in response to extracellular iron levels.

Descrição

Citação

SOUZA, B. S. V. Regulação do metabolismo de ferro em função do pH e caracterização da produção de sideróforos em Staphylococcus saprophyticus. 2018. 52 f. Dissertação (Mestrado em Genética e Biologia Molecular) - Universidade Federal de Goiás, Goiânia, 2018.