O Papel da variação do número de cópias genômicas no fenótipo clínico de deficiência intelectual em uma coorte retrospectiva da rede pública de saúde do Estado de Goiás

dc.contributor.advisor-co1Silva, Daniela de Melo e
dc.contributor.advisor1Cruz, Aparecido Divino da
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/7868817504129985por
dc.creatorPereira, Rodrigo Roncato
dc.creator.Latteshttp://lattes.cnpq.br/3086398842804414por
dc.date.accessioned2014-09-18T21:39:12Z
dc.date.issued2014-03-31
dc.description.abstractIntellectual disability is a signal comprising a set of clinically and genetically heterogeneous disorders in which the development and/or function of the brain is compromised. This deficiency is characterized by significant limitations both in intellectual functioning and in adaptive behavior and is observed begins before 18 years of age. It is characterized by a high degree of variable expression, and the expression of a wide range of phenotypes, ranging from various genetic syndromes known to characteristics non-syndromic and psychological and/or psychiatric disorders. The etiology is still poorly understood and about half of the cases are unclear. In recent years, the chromosomal analysis by microarray has revolutionized the evaluation of patients with developmental delay or intellectual disability. By this method, the genome of a patient is examined to detect gains or losses of genetic material that are usually too small to be detected by chromosome banding studies. Genomic deletions and duplications have an important role in characterizing genetic diseases, including many neurological disorders and neural development. Identifying these changes may contribute to the clinical management of affected individuals and assist their families, and furthermore, can provide information on the processes of development and brain function. In this context the main objective of this study was identified possible submicroscopic genomic changes associated with intellectual disability, using a platform Chromosomal Microarray high resolution in patients referred by doctors of public health from Goiás state and had initially a normal karyotype. Thus 15 patients with intellectual disabilities were tested by high resolution HD CytoScan Array (Affymetrix) tecnology which detected the presence of 33 variations in the number of genome copies in 10 (66.7%) of the probands. Nineteen microduplications (57.6%) and 14 microdeletions (42.4%) were observed, and 17 CNVs (51.5%) were neutral, 7 (21.2%) pathogenic, 5 (15.15%) potentially pathogenic and 4 (12.12%) of uncertain significance. Five patients showed no change in the number of copies. In this study, we could propose a genetic etiology for the phenotype of 8 patients and thus the diagnostic yield of the platform used was 53.3%. Although modest, this study was significant because this technology was first employed in the state of Goiás and thus, could contribute more genetic information about this complex and heterogeneous neurological sign of great importance to global public health.eng
dc.description.provenanceSubmitted by Erika Demachki (erikademachki@gmail.com) on 2014-09-18T17:39:38Z No. of bitstreams: 2 merged.pdf: 2827460 bytes, checksum: 84c579b817b24021e72bdea116e8ab88 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)eng
dc.description.provenanceApproved for entry into archive by Jaqueline Silva (jtas29@gmail.com) on 2014-09-18T21:39:12Z (GMT) No. of bitstreams: 2 merged.pdf: 2827460 bytes, checksum: 84c579b817b24021e72bdea116e8ab88 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)eng
dc.description.provenanceMade available in DSpace on 2014-09-18T21:39:12Z (GMT). No. of bitstreams: 2 merged.pdf: 2827460 bytes, checksum: 84c579b817b24021e72bdea116e8ab88 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2014-03-31eng
dc.description.resumoA deficiência intelectual é um sinal que compreende um conjunto de distúrbios clinica e geneticamente heterogêneos em que o desenvolvimento e/ou a função do cérebro é comprometida. Esta deficiência é caracterizada por limitações significativas tanto no funcionamento intelectual quanto no comportamento adaptativo e se inicia antes dos 18 anos de idade. É caracterizada por um elevado grau de expressividade variável, e pela manifestação de uma grande gama de fenótipos, variando de diversas síndromes genéticas conhecidas a características não sindrômicas e desordens psicológicas e/ou psiquiátricas. A etiologia ainda é mal compreendida e cerca de metade dos casos não são esclarecidos. A análise cromossômica por microarray tem revolucionado, nos últimos anos, a avaliação de pacientes com atraso no desenvolvimento ou deficiência intelectual. Por este método, o genoma de um paciente é examinado para a detecção de ganhos ou perdas de material genético que, normalmente, são muito pequeno para serem detectados por estudos cromossômicos com bandamento G. Deleções e duplicações genômicas têm um papel importante na caracterização de doenças genéticas, incluindo muitas desordens neurológicas e do desenvolvimento neural. A identificação dessas alterações pode contribuir para a manejo clínico dos indivíduos afetados e auxiliar suas famílias, e além disso, pode também fornecer informações sobre os processos do desenvolvimento e funcionamento do cérebro. Neste contexto o objetivo principal deste estudo foi identificar possíveis alterações genômicas submicroscópicas associadas à deficiência intelectual, utilizando uma plataforma de Chromosomal Microarray de alta resolução, em pacientes referenciados por médicos da rede pública de saúde do Estado de Goiás e que tenham apresentado inicialmente um cariótipo normal. Desta forma foram testados 15 pacientes com deficiência intelectual, pela tecnologia de alta resolução CytoScan HD Array (Affymetrix) que detectou a presença de 33 variações no número de cópias genômicas em 10 (66,7%) dos probandos. Foram observadas 19 microduplicações (57,6%) e 14 microdeleções (42,4%), sendo que 17 CNVs (51,5%) eram neutras, 7 (21,2 %) patogênicas, 5 (15,15%) potencialmente patogênicas e 4 (12,12%) de significado incerto. Cinco pacientes não apresentaram nenhuma alteração no número de cópias. Neste estudo foi possível propor uma etiologia genética para o fenótipo de 8 pacientes e dessa forma o rendimento diagnóstico, a título de pesquisa, da plataforma utilizada foi de 53,3%. Este estudo foi relevante já que esta tecnologia foi empregada pela primeira vez no estado de Goiás e com isso, pudemos contribuir com mais informação genética sobre esse complexo e heterogêneo sinal neurológico de grande importância para a saúde pública mundial.por
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESpor
dc.description.sponsorshipConselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPqpor
dc.formatapplication/pdf*
dc.identifier.citationPereira, Rodrigo Roncato. O Papel da variação do número de cópias genômicas no fenótipo clínico de deficiência intelectual em uma coorte retrospectiva da rede pública de saúde do Estado de Goiás. 2014. 118 f. Tese (Doutorado em Biologia) - Programa de Pós-graduação em Biologia (ICB) - Universidade Federal de Goiás, Goiânia, 2014.por
dc.identifier.urihttp://repositorio.bc.ufg.br/tede/handle/tede/3093
dc.languageporpor
dc.publisherUniversidade Federal de Goiáspor
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Ciências Biológicas - ICB (RG)por
dc.publisher.initialsUFGpor
dc.publisher.programPrograma de Pós-graduação em Biologia (ICB)por
dc.relation.referencesAdinolfi, M., Pertl, B., Sherlock, J. 1997. Rapid detection of aneuploidies by microsatellite and the quantitative fluorescent polymerase chain reaction. Prenat. Diagn. 17: 1299-1311. Alkan, C., Coe, B.P., Eichler, E.E. 2011. Genome structural variation discovery and genotyping. Nat. Rev. Genet. 12: 363-376. American Psychiatric Association (APA). 2000. Diagnostic and statistical manual of mental disorders. Washington, DC: American Psychiatric Association. Aruga, J., Yokota, N., Mikoshiba, K. 2003. Human SLITRK family genes: genomic organization and expression profiling in normal brain and brain tumor tissue. Gene. 315: 87-94. Bacolod, M.D., Schemmann, G.S., Giardina, S.F., Paty, P., Notterman, D.A., Barany, F. 2009. Emerging paradigms in cancer genetics: some important findings from high-density single nucleotide polymorphism array studies. Cancer Res. 69: 723-727. Barrett, T.B., Emberton, J.E., Nievergelt, C.M., Liang, S.G., Hauger, R.L., Eskin, E., et al. 2007. Further evidence for association of GRK3 to bipolar disorder suggests a second disease mutation. Psychiatr. Genet. 17: 315-322. Bartholomew, D.J. 2004. Measuring Intelligence, Facts and Fallacies. Cambridge: Cambridge Univ. Press. 186p. Battaglia, A. e Carey, J.C. 2003. Diagnostic evaluation of developmental delay/mental retardation: An overview. Am. J. Med. Genet. C. 117: 3-14. Beaulieu, M.A. 2013. Linking the Fragile X mental retardation protein to the lipoxygenase pathway. Med. Hypotheses. 80: 289-291. Benovic, J.L., Onorato, J.J., Arriza, J.L., Stone, W.C., Lohse, M., Jenkins, N.A., et al. 1991. Cloning, expression, and chromosomal localization of beta-adrenergic receptor kinase 2: a new member of the receptor kinase family. J. Biol. Chem. 266: 14939- 14946. Bernardini, L., Alesi, V., Loddo, S., Novelli, A., Bottillo, I., Battaglia, A., et al. 2010. High-resolution SNP arrays in mental retardation diagnostics: how much do we gain? Eur. J. Hum. Genet. 18: 178-185. Bhasin, T.K., Brocksen, S., Avchen, R.N., van Naarden Braun, K. 2006. Prevalence of four developmental disabilities among children aged 8 years--Metropolitan Atlanta Developmental Disabilities Surveillance Program, 1996 and 2000. MMWR. Surveill. Summ. 55: 1-9. Boghosian-Sell, L., Mewar, R., Harrison, W., Shapiro, R.M., Zackai, E.H., Carey, J., et al. 1994. Molecular mapping of the Edwards syndrome phenotype to two noncontiguous regions on chromosome 18. Am. J. Hum. Genet. 55: 476-483. Bollen, E. e Prickaerts, J. 2012. Phosphodiesterases in neurodegenerative disorders. IUBMB Life. 64: 965-970. Botstein, D. e Risch, N. 2003. Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. Nat. Genet. 33: 228-237. Brown, B.J., Hilfiker, H., DeMarco, S.J., Zacharias, D.A., Greenwood, T.M., Guerini, D., Strehler, E.E. 1996. Primary structure of human plasma membrane Ca(2+)- ATPase isoform 3. Biochim. Biophys. Acta. 1283: 10-13. Bruno, D.L., Ganesamoorthy, D., Schoumans, J., Bankier, A., Coman, D., Delatycki, M. et al. 2009. Detection of cryptic pathogenic copy number variations and constitutional loss of heterozygosity using high resolution SNP microarray analysis in 117 patients referred for cytogenetic analysis and impact on clinical practice. J. Med. Genet. 46: 123-131. Brusius-Facchin, A.C., De Souza, C.F., Schwartz, I.V., Riegel, M., Melaragno, M.I., Correia, P., Moraes, L.M., Llerena, J.Jr., Giugliani, R., Leistner-Segal, S. 2012. Severe phenotype in MPS II patients associated with a large deletion including contiguous genes. Am. J. Med. Genet. A. 158A:1055-1059. Bryson, S.E., Bradley, E.A., Thompson, A., Wainwright, A. 2008. Prevalence of autism among adolescentswith intellectual disabilities. Can. J. Psychiatry. 53: 449-459. Carlisle, H.J., Luong, T.N., Medina-Marino, A., Schenker, L., Khorosheva, E., Indersmitten, T., et al. 2011. Deletion of densin-180 results in abnormal behaviors associated with mental illness and reduces mGluR5 and DISC1 in the postsynaptic density fraction. J. Neurosci. 31: 16194-16207. Caspersson, T., Zech, L., Johansson, C. 1970. Differential banding of alkylating fluorochromes in human chromosomes. Exp. Cell Res. 60: 315-319. Chai, J.H., Locke, D.P., Greally, J.M., Knoll, J.H.M., Ohta, T., Dunai, J., Yavor, A., et al. 2003. Identification of four highly conserved genes between breakpoint hotspots BP1 and BP2 of the Prader-Willi/Angelman syndromes deletion region that have undergone evolutionary transposition mediated by flanking duplicons. Am. J. Hum. Genet. 73: 898-925. Cioni, G., Di Paco, M.C., Bertuccelli, B., Paolicelli, P.B., Canapicchi, R. 1997. MRI findings and sensorimotor development in infants with bilateral spastic cerebral palsy. Brain Dev. 19: 245-253. Cirigliano, V., Ejarque, M., Canadas, M., Paz Lloveras, A.P., del Mar Perez, M., Fuster, C., Egozcue, J. 2001. Clinical Application of multiplex quantitative fluorescent polymerase chain reaction (QF-PCR) for the rapid prenatal detection of common chromosome aneuploidies. Mol. Hum. Reprod. 7: 1001-1006. Cisternas, F.A., Vincent, J.B., Scherer, S.W., Ray, P.N. 2003. Cloning and characterization of human CADPS and CADPS2, new members of the Ca(2+)-dependent activator for secretion protein family. Genomics. 81: 279-291. Coffee, B., Keith, K., Albizua, I., Malone, T., Mowrey, J., Sherman, S.L., Warren, S.T. 2009. Incidence of fragile X syndrome by newborn screening for methylated FMR1 DNA. Am. J. Hum. Genet. 85: 503-514. Conrad, D.F., Andrews, T.D., Carter, N.P., Hurles, M.E., Pritchard, J.K. 2006. A high-resolution survey of deletion polymorphism in the human genome. Nat. Genet. 38: 75-81. Conrad, D.F., Pinto, D., Redon, R., Feuk, L., Gokcumen, O., Zhang, Y., Aerts, J., et al. 2010. Origins and functional impact of copy number variation in the human genome. Nature. 464: 704-712. Cooper, G.M., Coe, B.P., Girirajan, S., Rosenfeld, J.A., Vu, T.H., Baker, C., Williams, C., et al. 2011. A copy number variation morbidity map of developmental delay. Nat. Genet. 43: 838-846. Cui, Q. e So, K. F. 2004. Involvement of cAMP in neuronal survival and axonal regeneration. Anat. Sci. Int. 79: 209–212. Das, D. 2013. Molecular aberration studies in cases of idiopathic mental retardation: An update. Indian J. Hum. Gen. 19: 123-124. de Muelenaere, A., Fryns, J.P., van den Berghe, H. 1981. Familial partial distal 18q (18q22-18q23) trisomy. Ann. Genet. 24: 184-186. de Ravel, T.J., Devriendt, K., Fryns, J.P., Vermeesch, J.R. 2007. What’s new in karyotyping? The move towards array comparative genomic hybridisation (CGH). Eur. J. Pediatr. 166: 637-643. de Vries, B.B., van den Ouweland, A.M., Mohkamsing, S., Duivenvoorden, H.J., Mol, E., Gelsema, K., et al. 1997. Screening and diagnosis for the fragile X syndrome among the mentally retarded: an epidemiological and psychological survey. Collaborative Fragile X Study Group. Am. J. Hum. Genet. 61: 660-667. de Vries, B.B., Winter, R., Schinzel, A., van Ravenswaaij-Arts, C. 2003. Telomeres: a diagnosis at the end of the chromosomes. J. Med. Genet. 40: 385-398. de Vries, B.B., Pfundt, R., Leisink, M., Koolen, D.A., Vissers, L.E.L.M., Janssen, I.M., et al. 2005. Diagnostic genome profiling in mental retardation. Am. J. Hum. Genet. 77: 606-616. Dermody, J., Tolias, P. e Toruner, G.A. 2012. Chromosomal microarrays: influential players in the diagnosis of developmental disorders. Person. Med. 9: 167-169. Dorus, S., Vallender, E.J., Evans, P.D., Anderson, J.R., Gilbert, S.L., Mahowald, M., et al. 2004. Accelerated evolution of nervous system genes in the origin of Homo sapiens. Cell 119: 1027-1040. Edelmann, L. e Hirschhorn, K. 2009. Clinical utility of array CGH for the detection of chromosomal imbalances associated with mental retardation and multiple congenital anomalies. Ann. N. Y. Acad. Sci. 1151: 157-166. Elia, J., Gai, X., Xie, H.M., Perin, J.C., Geiger, E., Glessner, J.T., D'arcy, M., et al. 2010. Rare structural variants found in attention-deficit hyperactivity disorder are preferentially associated with neurodevelopmental genes. Mol. Psychiatry. 15: 637-646. Ensenauer, R.E., Adeyinka, A., Flynn, H.C., Michels, V.V., Lindor, N.M., Dawson, D.B., et al. 2003. Microduplication 22q11.2, an emerging syndrome: clinical, cytogenetic, and molecular analysis of thirteen patients. Am. J. Hum. Genet. 73: 1027- 1040. Fan, Y.S., Jayakar, P., Zhu, H., Barbouth, D., Sacharow, S., Morales, A., Carver, V., et al. 2007. Detection of pathogenic gene copy number variations in patients with mental retardation by genomewide oligonucleotide array comparative genomic hybridization. Hum. Mut. 28: 1124-1132. Firth, H.V., Richards, S.M., Bevan, A.P., Clayton, S., Corpas, M., Rajan, D., et al. 2009. DECIPHER: database of chromosomal imbalance and phenotype in humans using ensembl resources. Am. J. Hum. Genet. 84: 524-533. Flandin, P., Zhao, Y., Vogt, D., Jeong, J., Long, J., Potter, G., et al. 2011. Lhx6 and Lhx8 coordinately induce neuronal expression of Shh that controls the generation of interneuron progenitors. Neuron 70: 939-950. Flint, J. e Wilkie, A.O. 1996. The genetics of mental retardation. Br. Med. Bull., 52: 453-464. Fombonne, E. 2003. Epidemiological surveys of autism and other pervasive developmental disorders: an update. J. Autism Dev. Disord. 33: 365-382. Freson, K., Hashimoto, H., Thys, C., Wittevrongel, C., Danloy, S., Morita, Y., Shintani, N., et al. 2004. The pituitary adenylate cyclase-activating polypeptide is a physiological inhibitor of platelet activation. J. Clin. Invest. 113: 905-912. Fryns, J.P., Detavernier, F., van Fleteren, A., van den Berghe, H. 1978. Partial trisomy 18q in a newborn with typical 18 trisomy phenotype. Hum. Genet. 44: 201-205. Funatsu, N., Miyata, S., Kumanogoh, H., Shigeta, M., Hamada, K., Endo, Y., et al. 1999. Characterization of a novel rat brain glycosylphosphatidylinositol-anchored protein (Kilon), a member of the IgLON cell adhesion molecule family. J. Biol. Chem. 274: 8224-8230. Gecz, J., Oostra, B.A., Hockey, A., Carbonell, P., Turner, G., Haan, E. A., et al. 1997. FMR2 expression in families with FRAXE mental retardation. Hum. Molec. Genet. 6: 435-441. Gijsbers, A.C., Lew, J.Y., Bosch, C.A., Schuurs-Hoeijmakers, J.H., van Haeringen, A., den Hollander, N.S., et al. 2009. A new diagnostic workflow for patients with mental retardation and/or multiple congenital abnormalities: test arrays first. Eur. J. Hum. Genet. 17: 1394-1402. Graff J. e Mansuy, I.M. 2009. Epigenetic dysregulation in cognitive disorders. Eur. J. Neurosci. 30: 1-8. Gratacos, M., Costas, J., de Cid, R., Bayes, M., Gonzalez, J.R., Baca-Garcia, E., de Diego, Y., et al. 2009. Identification of new putative susceptibility genes for several psychiatric disorders by association analysis of regulatory and non-synonymous SNPs of 306 genes involved in neurotransmission and neurodevelopment. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 150B: 808-816. Green, R.E., Krause, J., Briggs, A.W., Maricic, T., Stenzel, U., Kircher, M., Patterson, N., et al. 2010. A draft sequence of the Neandertal genome. Science. 328: 710- 722. Grimshaw, G.M., Szczepura, A., Hultén, M., MacDonald, F., Nevin, N.C., Sutton, F., Dhanjal, S. 2003. Evaluation of molecular tests for prenatal diagnosis of chromosome abnormalities. Health Technol. Assess. 7: 1-77. Grossman, H.J. 1983. Classification in mental retardation. Washington, DC: American Association on Mental Retardation. 228p. Guerra, M. 2004. FISH (Fluorescent in situ Hybridization): Conceitos e Aplicações na Citogenética. Sociedade Brasileira de Genética. Ribeirão Preto, 176p. Hagerman, R. e Hagerman, P. 2013. Advances in clinical and molecular understanding of the FMR1 premutation and fragile X-associated tremor/ataxia syndrome. Lancet Neurol. 12: 786-798. Hattori, K., Tanaka, H., Yamamoto, N., Teraishi, T., Hori, H., Kinoshita, Y., et al. 2012. Blood CADPS2 Exon3 expression is associated with intelligence and memory in healthy adults. Biol. Psychol. 89: 117-122. Heikura, U., Taanila, A., Olsen, P., Hartikainen, A.L., von Wendt, L., Jarvelin, M.R. 2003. Temporal changes in incidence and prevalence of intellectual disability between two birth cohorts in Northern Finland. Am. J. Ment. Retard. 108:19-31. Hochstenbach, R., van Binsbergen, E., Engelen, J., Nieuwint, A., Polstra, A., Poddighe, P., Ruivenkamp, C., et al. 2009. Array analysis and karyotyping: workflow consequences based on a retrospective study of 36,325 patients with idiopathic developmental delay in the Netherlands. Eur. J. Med. Genet. 52: 161-169. Hoyer, J., Dreweke, A., Becker, C., Gohring, I., Thiel, C.T., Peippo, M.M., et al. 2007. Molecular karyotyping in patients with mental retardation using 100 K singlenucleotide polymorphism arrays. J. Med. Genet. 44: 629-636. Hultén, M.A., Dhanjal, S., Pertl, B. 2003. Rapid and simple prenatal diagnosis of common chromosome disorders: advantages and disadvantages of the molecular methods FISH and QF-PCR. Reprod. 126: 279-297. Iafrate, A.J., Feuk, L., Rivera, M.N., Listewnik, M.L., Donahoe, P.K., Qi, Y., Scherer, S.W., Lee, C. 2004. Detection of large-scale variation in the human genome. Nat. Genet. 36: 949-951. Izawa, I., Nishizawa, M., Ohtakara, K., Inagaki, M. 2002. Densin-180 interacts with delta-catenin/neural plakophilin-related armadillo repeat protein at synapses. J. Biol. Chem. 277: 5345-5350. Jacobson, J. e Mulick, J. 1996. Manual of diagnosis and professional practice in mental retardation. Washington, DC: American Psychological Association. 540p. Jancic, D., Lopez de Armentia, M., Valor, L. M., Olivares, R., Barco, A. 2009. Inhibition of cAMP response element-binding protein reduces neuronal excitability and plasticity, and triggers neurodegeneration. Cereb. Cortex. 19: 2535-2547. Kabra, M. e Gulati, S. 2003. Mental retardation. Indian J. Pediatr. 70: 153-158. Kaminsky, E.B., Kaul, V., Paschall, J., Church, D.M., Bunke, B., Kunig, D., Moreno-De-Luca, D., et al. 2011. An evidence-based approach to establish the functional and clinical significance of copy number variants in intellectual and developmental disabilities. Genet. Med. 13: 777-784. Kaufman, L., Ayub, M., Vincent, J.B. 2010. The genetic basis of non-syndromic intellectual disability: a review. J. Neurodev. Disord. 2: 182-209. Knight, S.J., Horsley, S.W., Regan, R., Lawrie, N.M., Maher, E.J., Cardy, D.L., et al. 1997. Development and clinical application of an innovative fluorescence in situ hybridization technique which detects submicroscopic rearrangements involving telomeres. Eur. J. Hum. Genet. 5: 1-8. Kobayashi, K., Kuroda, S., Fukata, M., Nakamura, T., Nagase, T., Nomura, N., Matsuura, Y., et al. 1998. p140Sra-1 (specifically Rac1-associated protein) is a novel specific target for Rac1 small GTPase. J. Biol. Chem. 273: 291-295. Koolen, D.A., Pfundt, R., de Leeuw, N., Hehir-Kwa, J.Y., Nillesen, W.M., Neefs, I., et al. 2009. Genomic microarrays in mental retardation: a practical workflow for diagnostic applications. Hum. Mutat. 30: 283-292. Kriek, M., White, S.J., Szuhai, K., Knijnenburg, J., van Ommen, G.J., den Dunnen, J.T., Breuning, M.H. 2006. Copy number variation in regions flanked (or unflanked) by duplicons among patients with developmental delay and/or congenital malformations; detection of reciprocal and partial Williams-Beuren duplications. Eur. J. Hum. Genet. 14: 180-189. Kriek, M. 2007. The human genome; you gain some, you lose some. Center for Human and Clinical Genetics, Faculty of Medicine/Leiden University Medical Center (LUMC). Doctoral thesis, Leiden University, 208p. Ku, C.S., Naidoo, N., Pawitan, Y. 2011. Revisiting Mendelian disorders through exome sequencing. Hum. Genet. 129: 351-370. Kuhlenbaumer, G., Hullmann, J., Appenzeller, S. 2011. Novel genomic techniques open new avenues in the analysis of monogenic disorders. Hum. Mutat. 32: 144-151. Kuruvilla, R., Zweifel, L. S., Glebova, N. O., Lonze, B. E., Valdez, G., Ye, H., Ginty, D.D. 2004. A neurotrophin signaling cascade coordinates sympathetic neuron development through differential control of TrkA trafficking and retrograde signaling. Cell. 118: 243-255. Lakics, V., Karran, E.H., Boess, F.G. 2010. Quantitative comparison of phosphodiesterase mRNA distribution in human brain and peripheral tissues. Neuropharmacology. 59: 367-374. Lalonde, E., Albrecht, S., Ha, K.C., Jacob, K., Bolduc, N., Polychronakos, C., et al. 2010. Unexpected allelic heterogeneity and spectrum of mutations in Fowler syndrome revealed by next-generation exome sequencing. Hum. Mutat. 31: 918-923. Landegent, J.E., Jansen in de Wal, N., Fisser-Groen, Y.M., Bakker, E., van der Ploeg, M., Pearson, P.L. 1986. Fine mapping of the Huntington disease linked D4S10 locus by non-radioactive in situ hybridization. Hum. Genet. 73: 354-357. Lee, B.H., Lee, M.J., Park, S., Oh, D.C., Elsasser, S., Chen, P.C., Gartner, C., et al. 2010. Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature. 467: 179-184. Leonard, H. e Wen, X. 2002. The epidemiology of mental retardation: challenges and opportunities in the new millennium. Ment. Retard. Dev. Disabil. Res. Rev. 8: 117- 134. Leung, W.C., Lau, E.T., Lao, T.T., Tang, M.H. 2004. Rapid aneuploidy screening (FISH or QF-PCR): the changing scene in prenatal diagnosis? Expert. Rev. Mol. Diagn. 4: 333-337. Li, X.Y., Shi, X.Y., Ju, J., Hu, X.H., Yang, X.F., Zou, L.P. 2012. A novel iduronate 2-sulfatase mutation in a Chinese family with mucopolysaccharidosis type II. World J. Pediatr. 8: 281-283. Lichter, P., Cremer, T., Borden, J., Manuelidis, L., Ward, D.C. 1988. Delineation of individual human chromosomes in metaphase and interphase cells by in situ suppression hybridization using recombinant DNA libraries. Hum. Genet. 80: 224-234. Linnankivi, T., Tienari, P., Somer, M., Kahkonen, M., Lonnqvist, T., et al. 2006. 18q deletions: clinical, molecular, and brain MRI findings of 14 individuals. Am. J. Med. Genet. 140A: 331-339. Loesch, D. e Hagerman, R. 2012. Unstable mutations in the FMR1 gene and the phenotypes. Adv. Exp. Med. Biol. 769: 78-114. Luckasson, R., Borthwick-Duffy, S., Buntinx, W.G.E., Coulter, D.L., Craig, E.M., et al. 2002. Mental retardation, definition, classification and systems of supports. Washington, DC: American Association on Mental Retardation. 238p. McCarroll, S.A., Hadnott, T.N., Perry, G.H., Sabeti, P.C., Zody, M.C., Barrett, J.C. et al. 2006. Common deletion polymorphisms in the human genome. Nat. Genet. 38: 86-92. McMullan, D.J., Bonin, M., Hehir-Kwa, J.Y., de Vries, B.B., Dufke, A., Rattenberry, E., et al. 2009. Molecular karyotyping of patients with unexplained mental retardation by SNP arrays: a multicenter study. Hum. Mutat. 30: 1082-1092. Mefford, H.C., Batshaw, M.L., Hoffman, E.P. 2012. Genomics, intellectual disability, and autism. N. Engl. J. Med. 366: 733-743. Mercer, A., Ronnholm, H., Holmberg, J., Lundh, H., Heidrich, J., Zachrisson, O., et al. 2004. PACAP promotes neural stem cell proliferation in adult mouse brain. J. Neurosci. Res. 76: 205-215. Mewar, R., Kline, A.D., Harrison, W., Rojas, K., Greenberg, F., Overhauser, J. 1993. Clinical and Molecular Evaluation of Four Patients with Partial Duplications of the Long Arm of Chromosome 18. Am.J. Hum. Genet. 53: 1269-1278. Mila, M., Sanchez, A., Badenas, C., Brun, C., Jimenez, D., Villa, M.P., et al. 1997. Screening for FMR1 and FMR2 mutations in 222 individuals from Spanish special schools: identification of a case of FRAXE-associated mental retardation. Hum. Genet. 100: 503-507. Miller, D.T., Shen, Y., Wu, B.L. 2008. Oligonucleotide microarrays for clinical diagnosis of copy number variation. Curr. Protoc. Hum. Genet. Chapter 8: Unit. 8.12. Miller, D.T., Adam, M.P., Aradhya, S., Biesecker, L.G., Brothman, A.R., Carter, N.P., et al. 2010. Consensus Statement: Chromosomal Microarray Is a First-Tier Clinical Diagnostic Test for Individuals with Developmental Disabilities or Congenital Anomalies. Am. J. Med. Genet. 86, 749-764. Moeschler, J.B. e Shevell, M. 2006. Clinical Genetic Evaluation of the Child With Mental Retardation or Developmental Delays. Pediatrics. 117: 2304-2316. Morrow, E.M. 2010. Genomic copy number variation in disorders of cognitive development. J. Am. Acad. Child Adolesc. Psychiatry. 49: 1091-1104. Murray, A., Youings, S., Dennis, N., Latsky, L., Linehan, P., McKechnie, N., et al. 1996. Population screening at the FRAXA and FRAXE loci: molecular analyses of boys with learning difficulties and their mothers. Hum. Mol. Genet. 5: 727-735. Nagase, T., Kikuno, R., Nakayama, M., Hirosawa, M., Ohara, O. 2000. Prediction of the coding sequences of unidentified human genes. XVIII. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro. DNA Res. 7: 273-281. Nagase, T., Kikuno, R., Ohara, O. 2001. Prediction of the coding sequences of unidentified human genes. XXI. The complete sequences of 60 new cDNA clones from brain which code for large proteins. DNA Res. 8: 179-187. Napoli, I., Mercaldo, V., Boyl, P.P., Eleuteri, B., Zalfa, F., De Rubeis, S., Di Marino, D., et al. 2008. The fragile X syndrome protein represses activity-dependent translation through CYFIP1, a new 4E-BP. Cell. 134: 1042-54. Ning, Y., Roschke, A., Smith, A.C.M., Macha, M., Precht, K., Riethman, H., et al. 1996. A complete set of human telomeric probes and their clinical application. National Institutes of Health and Institute of Molecular Medicine collaboration. Nat. Genet. 14: 86-89. Nosarti, C., Rushe, T.M., Woodruff, P.W., Stewart, A.L., Rifkin, L., Murray, R.M. 2004. Corpus callosum size and very preterm birth: relationship to neuropsychological outcome. Brain. 127: 2080-2089. Paciorkowski, A.R. e Fang, M. 2009. Chromosomal microarray interpretation: what is a child neurologist to do? Pediatr. Neurol. 41: 391-398. Park, S.J., Jung, E.H., Ryu, R.S., Kang, H.W., Ko, J.M., Kim, H.J., et al. 2011. Clinical implementation of whole-genome array CGH as a first-tier test in 5080 pre and postnatal cases. Mol. Cytogenet. 4:12. Patterson, M.C. e Zoghbi, H.Y. 2003. Mental retardation. X marks the spot. Neurology. 61: 156-157. Pertl, B., Kopp, S., Kroisel, P.M., Hausler, M., Sherlock, J., Winter, R., Adinolfi, M. 1997. Quantitative fluorescence polymerase chain reaction for the rapid prenatal detection of common aneuploidies and fetal sex. Am. J. Obstet. Gynecol. 177: 899-906. Petek, E., Windpassinger, C., Vincent, J.B., Cheung, J., Boright, A.P., Scherer, S.W., et al. 2001. Disruption of a novel gene (IMMP2L) by a breakpoint in 7q31 associated with Tourette syndrome. Am. J. Hum. Genet. 68: 848-858. Pieretti, M., Zhang, F.P., Fu, Y.H., Warren, S.T., Oostra, B.A., Caskey, C.T., Nelson, D.L. 1991. Absence of expression of the FMR-1 gene in fragile X syndrome. Cell. 66:817-822. Pinkel, D., Straume, T., Gray, J.W. 1986. Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc. Natl. Acad. Sci. 83: 2934-2938. Pinkel, D., Segraves, R., Sudar, D., Clark, S., Poole, I., Kowbel, D., Collins, C., et al. 1998. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat. Genet. 20: 207-211. Potocki, L., Bi, W., Treadwell-Deering, D., Carvalho, C.M., Eifert, A., Friedman, E.M., Glaze, D., et al. 2007. Characterization of Potocki-Lupski syndrome (dup(17) (p11.2p11.2)) and delineation of a dosage-sensitive critical interval that can convey an autism phenotype. Am. J. Hum. Genet. 80: 633-649. Procter, M., Chou, L.S., Tang, W., Jama, M., Mao, R. 2006. Molecular diagnosis of Prader-Willi and Angelman syndromes by methylation-specific melting analysis and methylation-specific multiplex ligation-dependent probe amplification. Clin. Chem. 52: 1276-1283. Quiroga, R., Monfort, S., Oltra, S., Ferrer-Bolufer, I., Roselló, M., Mayo, S., et al. 2011. Partial Duplication of 18q Including a Distal Critical Region for Edwards Syndrome in a Patient with Normal Phenotype and Oligoasthenospermia: Case Report. Cytogenet. Genome Res. 133: 78-83. Ramocki, M.B. e Zoghbi, H.Y. 2008. Failure of neuronal homeostasis results in common neuropsychiatric phenotypes. Nature. 455: 912-918. Rao, J.S., Rapoport, S.I., Kim, H.W. 2009. Decreased GRK3 but not GRK2 expression in frontal cortex from bipolar disorder patients. Int. J. Neuropsychopharmacol. 12: 851-860. Rauch, A., Hoyer, J., Guth, S., Zweier, C., Kraus, C., et al. 2006. Diagnostic yield of various genetic approaches in patients with unexplained developmental delay or mental retardation. Am. J. Med. Genet. Part A. 140: 2063-2074. Ravnan, J.B., Tepperberg, J.H., Papenhausen, P., Lamb, A.N., Hedrick, J., Eash, D., et al. 2006. Subtelomere FISH analysis of 11,688 cases: an evaluation of the frequency and pattern of subtelomere rearrangements in individuals with developmental disabilities. J. Med. Genet. 43: 478-489. Redeker, E.J.W., de Visser, A.S.H., Bergen, A.A.B., Mannens, M.M.A.M. 2008. Multiplex ligation-dependent probe amplification (MLPA) enhances the molecular diagnosis of aniridia and related disorders. Mol. Vis. 14: 836-840. Redolfi, E., Montagna, C., Mumm, S., Affer, M., Susani, L., Reinbold, R., Hol, F., et al. 1998. Identification of CXorf1, a novel intronless gene in Xq27.3, expressed in human hippocampus. DNA Cell. Biol. 17: 1009-1016. Redon, R., Ishikawa, S., Fitch, K.R., Feuk, L., Perry, G.H., Andrews, T.D., et al. 2006. Global variation in copy number in the human genome. Nature. 444: 444-454. Regier, D.A., Friedman, J.M., Marra, C.A. 2010. Value for money? Array genomic hybridization for diagnostic testing for genetic causes of intellectual disability. Am. J. Hum. Genet. 86: 765-772. Rittey, C.D. 2003. Learning difficulties: what the neurologist needs to know. J. Neurol. Neurosurg Psychiatry. 74: 30-36. Rooms, L., Reyniers, E., Kooy, R.F. 2005. Subtelomeric rearrangements in the mentally retarded: a comparison of detection methods. Hum. Mutat. 25: 513-524. Sadakata, T., Washida, M., Iwayama, Y., Shoji, S., Sato, Y., Ohkura, T., Katoh- Semba, R., et al. 2007. Autistic-like phenotypes in Cadps2-knockout mice and aberrant CADPS2 splicing in autistic patients. J. Clin. Invest. 117: 931-943. Sagoo, G.S., Butterworth, A.S., Sanderson, S., Shaw-Smith, C., Higgins, J.P., Burton, H. 2009. Array CGH in patients with learning disability (mental retardation) and congenital anomalies: updated systematic review and metaanalysis of 19 studies and 13.926 subjects. Genet. Med. 11: 139-146. Salvador-Carulla, L. e Bertelli, M. 2008. “Mental retardation” or “intellectual disability”: time for a conceptual change. Psychopathology 41: 10-16. Saus, E., Brunet, A., Armengol, L., Alonso, P., Crespo, J.M., Fernández-Aranda, F., Guitart, M., et al. 2010. Comprehensive copy number variant (CNV) analysis of neuronal pathways genes in psychiatric disorders identifies rare variants within patients. J. Psychiatr. Res. 44: 971-978. Schalock, R.L., Borthwick-Duffy, S.A., Bradley, V.J., Buntinx, W.H.E., Coulter, D.L., Craig, E.M., et al. 2010. Intellectual Disability: Definition, Classification, and Systems of Supports. American Association on Intellectual and Developmental Disabilities, Washington, DC. Schenck, A., Bardoni, B., Moro, A., Bagni, C., Mandel, J. L. 2001. A highly conserved protein family interacting with the fragile X mental retardation protein (FMRP) and displaying selective interactions with FMRP-related proteins FXR1P and FXR2P. Proc. Nat. Acad. Sci. 98: 8844-8849. Schouten, J.P., McElgunn, C.J., Waaijer, R., Zwijnenburg, D., Diepvens, F., Pals, G. 2002. Relative quantification of 40 nucleic acid sequences by multiplex ligationdependent probe amplification. Nucleic Acids Res. 30: e57. Sharp, A.J. 2009. Emerging themes and challenges in defining the role of structural variation in human disease. Hum. Mutat. 30: 135-144. Shevell, M., Ashwal, S., Donley, D., Flint, J., Gingold, M., Hirtz, D., et al. 2003. Practice parameter: evaluation of the child with global developmental delay. Neurology. 60: 367-380. Singleton, A.B. 2011. Exome sequencing: a transformative technology. Lancet Neurol. 10: 942-946. Slager, R.E., Newton, T.L., Vlangos, C.N., Finucane, B., Elsea, S.H. 2003. Mutations in RAI1 associated with Smith-Magenis syndrome. Nat. Genet. 33: 466-468. Slater, H.R., Bruno, D.L., Ren, H., Pertile, M., Schouten, J.P., Choo, K.H. 2003. Rapid, high throughput prenatal detection of aneuploidy using a novel quantitative method (MLPA). J. Med. Genet. 40: 907-912. Smeets, D.F. 2004. Historical prospective of human cytogenetics: from microscope to microarray. Clin. Biochem. 37: 439-446. Smith, A.C., Dykens, E., Greenberg, F. 1998. Behavioral phenotype of Smith- Magenis syndrome (del 17p11.2). Am. J. Med. Genet. 81: 179-185. Solinas-Toldo, S., Lampel, S., Stilgenbauer, S., Nickolenko, J., Benner, A., Dohner, H. et al. 1997. Matrix-based comparative genomic hybridization: biochips to screen for genomic imbalances. Gen. Chrom. Cancer. 20: 399-407. Speidel, D., Varoqueaux, F., Enk, C., Nojiri, M., Grishanin, R.N., Martin, T.F., et al. 2003. A family of Ca2+-dependent activator proteins for secretion: comparative analysis of structure, expression, localization, and function. J. Biol. Chem. 278(52): 52802-52809. Stankiewicz, P. e Beaudet, A.L. 2007. Use of array CGH in the evaluation of dysmorphology, malformations, developmental delay, and idiopathic mental retardation. Curr. Opin. Genet. Dev. 17: 182-192. Strelnikov, V., Nemtsova, M., Chesnokova, G., Kuleshov, N., Zaletayev, D. 1999. A simple multiplex FRAXA, FRAXE, and FRAXF PCR assay convenient for wide screening programs. Hum. Mutat. 13: 166-169. Stromme, P. 2000. Aetiology in severe and mild mental retardation: a populationbased study of Norwegian children. Dev. Med. Child. Neurol. 42: 76-86. Teer, J.K. e Mullikin, J.C. 2010. Exome sequencing: the sweet spot before whole genomes. Hum. Mol. Genet. 19: 145-151. Telias, M., Segal, M., Ben-Yosef, D. 2013. Neural differentiation of Fragile X human Embryonic Stem Cells reveals abnormal patterns of development despite successful neurogenesis. Dev. Biol. 374: 32-45. Topper, S., Ober, C., Das, S. 2011. Exome sequencing and the genetics of intellectual disability. Clin. Genet. 80: 117-126. Toscano, C.D. e Guilarte, T.R. 2005. Lead neurotoxicity: from exposure to molecular effects. Brain. Res. Brain. Res. Rev. 49: 529-554. Trask, B.J. 2002. Human cytogenetics: 46 chromosomes, 46 years and counting. Nat. Rev. Genet. 3: 769-78. Treadwell-Deering, D.E., Powell, M.P., Potocki, L. 2010. Cognitive and behavioral characterization of the Potocki-Lupski syndrome (duplication 17p11.2). J. Dev. Behav. Pediatr. 31: 137-143. Turleau, C., Chavin-Colin, F., Narbouton, R., Asensi, D., Grouchy, J.D. 1980. Trisomy 18q-. Trisomy mapping of chromosome 18 revisited. Clinical Genet. 18: 20-26. Turleau, C. 2008. Monosomy 18p.Orphanet J. Rare Diseases. 3: 4. Tzeng, C.C., Tzeng, P.Y., Sun, H.S., Chen, R.M., Lin, S.J. 2000. Implication of screening for FMR1 and FMR2 gene mutation in individuals with nonspecific mental retardation in Taiwan. Diagn. Mol. Pathol. 9: 75-80. Ullmann, R., Turner, G., Kirchhoff, M., Chen, W., Tonge, B., Rosenberg, C., et al. 2007. Array CGH identifies reciprocal 16p13.1 duplications and deletions that predispose to autism and/or mental retardation. Hum. Mutat. 28: 674-682. Urdinguio, R.G., Sanchez-Mut, J.V., Esteller M. 2009. Epigenetic mechanisms in neurological diseases: genes, syndromes, and therapies. Lancet Neurol. 8: 1056-1072. van Karnebeek, C.D., Jansweijer, M.C., Leenders, A.G., Offringa, M., Hennekam, R.C. 2005. Diagnostic investigations in individuals with mental retardation: a systematic literature review of their usefulness. Eur. J. Hum. Genet. 13: 6-25. van Rompay, A.R., Johansson, M., Karlsson, A. 1999. Identification of a novel human adenylate kinase: cDNA cloning, expression analysis, chromosome localization and characterization of the recombinant protein. Europ. J. Biochem. 261: 509-516. Veltman, J.A. 2006. Genomic microarrays in clinical diagnosis. Curr. Opin. Pediatr. 18: 598-603. Vermeesch, J.R., Fiegler, H., de Leeuw, N., Szuhai, K., Schoumans, J., Ciccone, R., et al. 2007. Guidelines for molecular karyotyping in constitutional genetic diagnosis. Eur. J. Hum. Genet. 15: 1105-1114. Versacci, P., Digilio, M. C., Sauer, U., Dallapiccola, B., Marino, B. 2005. Absent pulmonary valve with intact ventricular septum and patent ductus arteriosus: a specific cardiac phenotype associated with deletion 18q syndrome. Am. J. Med. Genet. 138A: 185-186. Vissers, L.E., de Vries, B.B., Osoegawa, K. 2003. Array-based comparative genomic hybridization for the genomewide detection of submicroscopic chromosomal abnormalities. Am. J. Hum. Genet. 73: 1261-1270. Vissers, L.E., de Vries, B.B., Veltman, J.A. 2010. Genomic microarrays in mental retardation: from copy number variation to gene, from research to diagnosis. J. Med. Genet. 47: 289-297. Wang, L., Xu, J., Wu, Q., Dai, J., Ye, X., Zeng, L., Ji, C., et al. 2003. Cloning and characterization of a novel splice variant of the brain-specific protein densin-180. Int. J. Mol. Med. 11: 257-260. Waschek, J.A. 2002. Multiple actions of pituitary adenylyl cyclase activating peptide in nervous system development and regeneration. Dev. Neurosci. 24: 14-23. Wiegant, J., Kalle, W., Mullenders, L., Brookes, S., Hoovers, J.M., Dauwerse, J.G. et al. 1992. High-resolution in situ hybridization using DNA halo preparations. Hum. Mol. Genet. 1: 587-591. Wilson, S.M., Bhattacharyya, B., Rachel, R.A., Coppola, V., Tessarollo, L., Householder, D.B., Fletcher, C.F., et al. 2002. Synaptic defects in ataxia mice result from a mutation in Usp14, encoding a ubiquitin-specific protease. Nature Genet. 32: 420-425. Wincent, J., Anderlid, B.M., Lagerberg, M., Nordenskjold, M., Schoumans, J. 2011. High-resolution molecular karyotyping in patients with developmental delay and/or multiple congenital anomalies in a clinical setting. Clin. Genet. 79: 147-157. World Health Organization. Chapter V: mental retardation (F70-F79). The ICD- 10. Classification of mental and behavioural disorders. Clinical descriptions and diagnostic guidelines. 10th revision, edition 2010. Xiang, B., Zhu, H., Shen, Y., Miller, D.T., Lu, K., Hu, X., Andersson, H.C., et al. 2010. Genome-wide oligonucleotide array comparative genomic hybridization for etiological diagnosis of mental retardation: a multicenter experience of 1499 clinical cases. J. Mol. Diagn. 12: 204–212. Xu, J. e Chen, Z. 2003. Advances in molecular cytogenetics for the evaluation of mental retardation. Am. J. Med. Genet. 117: 15-24. Yeargin-Allsopp, M., Murphy, C.C., Cordero, J.F., Decouflé, P., Hollowell, J.G. 1997. Reported biomedical causes and associated medical conditions for mental retardation among 10-year-old children, metropolitan Atlanta, 1985 to 1987. Dev. Med. Child. Neurol. 39: 142-149. Yobb, T.M., Somerville, M.J., Willatt, L., Firth, H.V., Harrison, K., MacKenzie, J., et al. 2005. Microduplication and triplication of 22q11.2: a highly variable syndrome. Am. J. Hum. Genet. 76: 865-876. Yunis, J.J. 1976. High resolution of human chromosomes. Science. 191: 1268- 1270. Zahir, F. e Friedman, J.M. 2007. The impact of array genomic hybridization on mental retardation research: a review of current technologies and their clinical utility. Clin. Genet. 72: 271-287. Zanni, G., Cali, T., Kalscheuer, V.M., Ottolini, D., Barresi, S., Lebrun, N., et al. 2012. Mutation of plasma membrane Ca2+ ATPase isoform 3 in a family with X-linked congenital cerebellar ataxia impairs Ca2+ homeostasis. Proc. Natl. Acad. Sci. U.S.A. 109: 14514-14519. Zhang, Z.F., Ruivenkamp, C., Staaf, J., Zhu, H., Barbaro, M., Petillo, D., et al. 2008. Detection of submicroscopic constitutional chromosome aberrations in clinical diagnostics: a validation of the practical performance of different array platforms. Eur. J. Hum. Genet. 16: 786-792. Zhao, Y., Guo, Y.J., Tomac, A.C., Taylor, N.R., Grinberg, A., Lee, E.J., et al. 1999. Isolated cleft palate in mice with a targeted mutation of the LIM homeobox gene Lhx8. Proc. Nat. Acad. Sci. 96: 15002-15006. Zhao, Y., Marin, O., Hermesz, E., Powell, A., Flames, N., Palkovits, M., et al. 2003. The LIM-homeobox gene Lhx8 is required for the development of many cholinergic neurons in the mouse forebrain. Proc. Nat. Acad. Sci. 100: 9005-9010. Zoua, G., Zhang, J., Li, X.W., He, L., He, G., Duan, T. 2008. Quantitative fluorescent polymerase chain reaction to detect chromosomal anomalies in spontaneous abortion. Int. J. Gynecol. Obstet. 103: 237-240. Recursos da Internet: DECIPHER - Database of Chromosomal Imbalance and Phenotype in Humans using Ensembl Resources - https://decipher.sanger.ac.uk/application/. Acesso em Janeiro de 2014. DGV - Database Of Genomic Variation - http://projects.tcag.ca/variation/. Acesso em Janeiro de 2014. ISCA - The International Standards For Cytogenomic Arrays Consortium - https://www.iscaconsortium.org. Acesso em Janeiro de 2014. RefSeq - NCBI Reference Sequences - http://www.ncbi.nlm.nih.gov/refseq/. Acesso em Janeiro de 2014.por
dc.rightsAcesso Abertopor
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectChromosomal Microarrayspor
dc.subjectDeficiência Intelectualpor
dc.subjectCNVspor
dc.subjectCariótipopor
dc.subjectIntellectual Disabilitieseng
dc.subjectKaryotypeeng
dc.subject.cnpqMICROBIOLOGIA::MICROBIOLOGIA APLICADApor
dc.thumbnail.urlhttp://repositorio.bc.ufg.br/tede/retrieve/7932/merged.pdf.jpg*
dc.titleO Papel da variação do número de cópias genômicas no fenótipo clínico de deficiência intelectual em uma coorte retrospectiva da rede pública de saúde do Estado de Goiáspor
dc.title.alternativeThe role of copy number variation in the clinical phenotype of intellectual disabilityin a retrospective cohort of public health network from Goiás Stateeng
dc.typeTesepor

Arquivos

Pacote Original
Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
merged.pdf
Tamanho:
2.7 MB
Formato:
Adobe Portable Document Format
Descrição:
tese
Licença do Pacote
Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
2.11 KB
Formato:
Item-specific license agreed upon to submission
Descrição: