Inteligência artificial aplicada na quantificação de nódulos pulmonares em imagens de tomografia computadorizada
Carregando...
Data
Autores
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de Goiás
Resumo
Accurate quantification of pulmonary nodules in computed tomography remains challenging due to interobserver variability and the lack of scalable methods capable of generalizing across heterogeneous datasets. This study proposes an automated solution that integrates deep learning to generate nodule segmentation masks and compute volumetric measurements using spatial information from the images. The methodology is structured into three main stages: data preparation and pre-processing, model training and validation, and performance evaluation. The use of the nnU-Net architecture, which automates pre-processing, segmentation, and post-processing, provides scalability and dynamic adaptation to the workflow, enhancing the clinical applicability of the solution. The results indicate consistent volume and diameter measurements across successive scans and strong agreement with consensus masks, even for anatomically complex nodules. The 3D U-Net architecture achieved a mean Dice coefficient of DC = 0.7846 with a standard deviation of σ = 0.18, outperforming the interobserver Dice index of DC = 0.5218 and exhibiting a low volumetric deviation between acquisitions. The proposed methodology advances automated quantification of pulmonary nodules, offering a resilient and adaptable solution to support medical diagnosis in real-world clinical scenarios.
Descrição
Citação
CAMARGO, T. F. O. Inteligência artificial aplicada na quantificação de nódulos pulmonares em imagens de tomografia computadorizada, 2025. 102 f. Dissertação (Mestrado em Engenharia Elétrica e da Computação) – Escola de Engenharia Elétrica, Mecânica e de Computação, Universidade Federal de Goiás, Goiânia, 2025.