Condutância em nanofios magnéticos diluídos

Carregando...
Imagem de Miniatura

Data

2010

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Goiás

Resumo

We investigate core-shell nanowires of diluted magnetic semiconductors (DMS) with remote n-type modulation doping. The incorporation of Mn2 ions acting as spin 5/2 impurities in the core region of the wire gives rise to a strong s-d exchange coupling between electrons in the wire and those of the d levels of the Mn2 ions. Applying an external magnetic eld along the axis of the wire, within the mean eld approximation, the s-d exchange generates a spin-dependent core potential. A gate voltage is applied radially to wire, to obtain some control over the density of the wire. Electronic strucutre of the wire was calculated within the e?ective mass approximation, in both approximations Hartree and spin density functional theory. We calculated the conductance of wire using the Landauer-B?uttiker formulation in the linear response regime, which generally results in a total conductance with well-de ned plateaus in GT = 2; 6; 10G0 (G0 = e2=h is the quanta of conductance), which occurred because in the system investigated the rst level is twofold degenerated (spin degenerescence) and the others are fourfold degenerated (spin degenerescence and orbital angular momentum). In the absence of a magnetic eld we observe that when we take into account the e?ects of exchange and correlation, the states with eigenvalues of Lz nonzero will be polarized while those with l = 0 isn't polarized. This unpolarized level with eigenvalue of Lz null suggests that, perhaps, the 0.7 anomaly (the emergence of two plateau at G = 0:7G0 and the other in G = G0) quantum wires on existing geometry of split-gate is related to the geometry of the wire. The results for total energy show that there are a competition between the ferromagnetic and paramagnetic states.

Descrição

Citação

MENDES, Udson Cabra. Condutância em nanofios magnéticos diluídos. 2010. 97 f. Dissertação ( Mestrado em Fisica) - Universidade Federal de Goiás, Goiânia.