Técnicas de reamostragem e super-resolução em imagens de culturas agrícolas
dc.contributor.advisor1 | Soares, Fabrízzio Alphonsus Alves de Melo Nunes | |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/7206645857721831 | |
dc.contributor.referee1 | Soares, Fabrizzio Alphonsus Alves de Melo Nunes | |
dc.contributor.referee2 | Pedrini, Helio | |
dc.contributor.referee3 | Cabacinha, Christian Dias | |
dc.contributor.referee4 | Costa, Ronaldo Martins da | |
dc.contributor.referee5 | Fernandes, Deborah Silva Alves | |
dc.creator | Nogueira, Emília Alves | |
dc.creator.Lattes | http://lattes.cnpq.br/0949189985325862 | |
dc.date.accessioned | 2025-04-23T19:38:03Z | |
dc.date.available | 2025-04-23T19:38:03Z | |
dc.date.issued | 2025-02-28 | |
dc.description.abstract | The increasing demand for food, coupled with climate change, has driven the development of agricultural monitoring technologies to increase the efficiency and sustainability of crop production such as sugarcane and corn. However, the low resolution of images captured by Unmanned Aerial Vehicle (UAV) and satellites limits the detailed analysis of essential agronomic features. This thesis investigates methods to improve the resolution of agricultural images, comparing Traditional Resampling Techniques (TRT) with Super-Resolution with Deep Networks (SRDN) algorithms, such as Real Enhanced Super-Resolution Generative Adversarial Network (Real-ESRGAN), Multi-Level upscaling Transform (MuLUT) and Learning Resampling Function (LeRF). The aim of this study is to investigate the application of deep learning techniques to improve the resolution of agricultural images. For this purpose, existing methods were reviewed and an agricultural dataset was prepared. The research adopted an experimental approach, evaluating the methods quantitatively using metrics such as Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM), and qualitatively by visual analysis. The experiments demonstrate significant improvements in image resolution using the SRDN algorithms compared to TRT, with gains of 484.34% in sugarcane images, 234.4% in corn, and 58.57% in satellite images. Although the SRDN techniques were developed for other purposes, such as improving the resolution of images of people and anime, their performance can be observed in agricultural images. The results obtained are significant for precision agriculture, since the increase in image resolution can aid in monitoring plant growth and health, providing faster and more effective interventions. In future investigations, we hope to expand the comparisons with other SRDN algorithms. | eng |
dc.description.resumo | A crescente demanda por alimentos, associada às mudanças climáticas, tem impulsionado o desenvolvimento de tecnologias de monitoramento agrícola para aumentar a eficiência e a sustentabilidade da produção de culturas como cana-de-açúcar e milho. No entanto, a baixa resolução das imagens capturadas por Veículo Aéreo Não Tripulado (VANT) e satélites limita a análise detalhada de características agronômicas essenciais. Esta tese investiga métodos para melhorar a resolução de imagens agrícolas, comparando as Técnicas Tradicionais de Reamostragem (TTR) com algoritmos de Super-Resolução com Redes Profundas (SRRP), como Real Enhanced Super-Resolution Generative Adversarial Network (Real-ESRGAN), Multi-Level upscaling Transform (MuLUT) e Learning Resampling Function (LeRF). O objetivo deste estudo é investigar a aplicação de técnicas de aprendizado profundo para melhorar a resolução de imagens agrícolas. Para isso, foram revisados os métodos existentes e preparado o conjunto de dados agrícola. A pesquisa adotou uma abordagem experimental, avaliando os métodos quantitativamente usando métricas como o Peak Signal-to-Noise Ratio (PSNR) e Structural Similarity Index (SSIM), e qualitativamente por análise visual. Os experimentos demonstram melhorias significativas na resolução das imagens usando os algoritmos de SRRP em comparação aos TTR, com ganhos de 484,34% nas imagens de cana-de-açúcar, 234,4% no milho e 58,57% nas imagens de satélite. Embora as técnicas de SRRP tenham sido desenvolvidas para outros propósitos, como melhorar a resolução de imagens de pessoas e animes, seu desempenho pode ser observado em imagens agrícolas. Os resultados obtidos são significativos para a agricultura de precisão, pois o aumento da resolução das imagens pode auxiliar no monitoramento do crescimento e da saúde das plantas, proporcionando intervenções mais rápidas e efetivas. Em investigações futuras, esperamos ampliar as comparações com outros algoritmos de SRRP. | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de Goiás | |
dc.identifier.citation | NOGUEIRA, E. A. Técnicas de reamostragem e super-resolução em imagens de culturas agrícolas. 2025. 110 f. Tese (Doutorado em Ciência da Computação) - Instituto de Informática, Universidade Federal de Goiás, Goiânia, 2025. | |
dc.identifier.uri | http://repositorio.bc.ufg.br/tede/handle/tede/14157 | |
dc.language | Português | por |
dc.publisher | Universidade Federal de Goiás | por |
dc.publisher.country | Brasil | por |
dc.publisher.department | Instituto de Informática - INF (RMG) | |
dc.publisher.initials | UFG | por |
dc.publisher.program | Programa de Pós-graduação em Ciência da Computação (INF) | |
dc.rights | Acesso Aberto | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | Reamostragem | por |
dc.subject | Super resolução | por |
dc.subject | Aprendizado profundo | por |
dc.subject | UAVs | por |
dc.subject | Satélite | por |
dc.subject | Cana-de- açúcar | por |
dc.subject | Milho | por |
dc.subject | Resampling | eng |
dc.subject | Super resolution | eng |
dc.subject | Deep learning | eng |
dc.subject | Satellite | eng |
dc.subject | Sugarcane | eng |
dc.subject | Corn | eng |
dc.subject.cnpq | CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO | |
dc.title | Técnicas de reamostragem e super-resolução em imagens de culturas agrícolas | |
dc.title.alternative | Resampling and super-resolution techniques in agricultural crop images | eng |
dc.type | Tese |