Aplicação da inteligência artificial, ontologia e mineração de dados para classificação de sentenças judiciais

Nenhuma Miniatura disponível

Data

2021-12-20

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Goiás

Resumo

The objective of this work is to apply together ontology with bag-of-words models, similarity learning, and document classification in texts with uttered decisions. The objective is to improve the results of data mining in a database of court decisions. An automatic method of searching sentences in judicial processes related to the one under judgment is developed using the frequency term-inverse of frequency in documents model together with the Jaccard similarity coefficient, establishing weights on the co-occurrence of terms in legal texts of the same category. A dataset with document vectorization is used for supervised training of machine learning algorithms, aiming to classify new justice processes. The proposed methodology provides flexibility to the Judiciary, simulating the role of legal advisors in preparing court decisions with less time and efficiency in the search for jurisprudential standards. The results obtained show that, through accuracy metrics, the proposed model is effective and efficient, and can be applied in the process of identification of court decisions. Thus, the application of artificial intelligence, ontology, and data mining is indicated for information retrieval in court decisions.

Descrição

Citação

CASTRO JUNIOR, A. P. Aplicação da inteligência artificial, ontologia e mineração de dados para classificação de sentenças judiciais. 2021. 170 f. Tese (Doutorado em Engenharia Elétrica e da Computação) - Universidade Federal de Goiás, Goiânia, 2021.