Composição e variabilidade química dos óleos essenciais das folhas e frutos de Eugenia dysenterica

dc.contributor.advisor1Ferri, Pedro Henrique
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/2129799749473005por
dc.creatorDuarte, Alessandra Rodrigues
dc.creator.Latteshttp://lattes.cnpq.br/8252068042641312por
dc.date.accessioned2014-08-06T14:45:42Z
dc.date.issued2008
dc.description.abstractThe chemical variations in the essential oil compositions of the wild and cultivated Eugenia dysenterica DC. (Myrtaceae) populations indicated the presence of two clusters of oils according to sampling origin. The cluster I included cultivate (subcluster IA) and mainly wild samples (subcluster IB) originating from Senador Canedo (SC), with high percentages of a-pinene (9.0 ± 2.3%), b-pinene (9.3 ± 2.6%), (Z)-b-ocimene (5.9 ± 4.2%) and g-cadinene (27 ± 5%), limonene (12 ± 9%), and caryophyllene oxide (7.4 ± 4.7%), respectively. In cluster II, with wild and cultivated samples originating from Campo Alegre de Goiás, the major constituents were b-caryophyllene (24 ± 8%), d-cadinene (13 ± 4%), and a-copaene (9.6 ± 3.2%). The canonical correlation analysis revealed that limonene, ?-cadinene, caryophyllene oxide, Zn, Cu, Fe, Mn, and mean monthly values of temperature and precipitation were quite strongly related to SC wild samples (subcluster IB), whereas (Z)-b-ocimene, a-copaene, b- caryophyllene, a-humulene, d-cadinene, and P were related to wild samples from CA and cultivated samples, regardless of population origin (subcluster IA and cluster II). Sesquiterpene hydrocarbons predominated in all population sampled and the observed essential oil chemovariation might be genetically determined (chemotypes), in addition to a clear environmental influence on the samples originating from SC site (ecotypes). Chemical variations in essential oil compositions of cultivated E. dysenterica populations in dry and wet seasons have indicated the presence of two oil clusters related to sampling origin and seasons. Cluster I included dry (subcluster IA) and mainly wet samples (subcluster IB) originating from Senador Canedo (SC), with high percentages of b-pinene?(9.3 ± 2.6%), a-pinene (9.0 ± x 2.3%), (Z)-b-ocimene (5.9 ± 4.2%) and g-cadinene (17 ± 11%), limonene (14 ± 9%), and b-pinene?(8.6 ± 5.4%), respectively. In cluster II, which included dry and wet cultivated samples originating from Campo Alegre de Goiás, the major constituents were b-caryophyllene (32 ± 15%), d-cadinene (13 ± 6%), and a- copaene (8.1 ± 4.0%). Here also, sesquiterpene hydrocarbons predominated in all the sampled populations and the observed essential oil chemovariation might be genetically determined, in addition to a clear seasonal influence only on the samples originating from the SC site. In addition, the oils from wild E. fruits harvested during three stages of ripening showed the monoterpene hydrocarbons as most abundant group of volatiles, accounting for about 68% of the total identified compounds. Limonene (25.8% and 24.6%), (E)-b-ocimene (20.3% and 21.7%) and b-pinene (12.0% and 14.2%) were the compounds in the unripe and semi-ripe stages, respectively, while g-muurolene (25.8%), b-caryophyllene (18.4%) and a- humulene (15.4%) became the major compounds in ripe fruits. The concentration of monoterpenes was high in the unripe and semi-ripe stages and decreased afterwards, while sesquiterpenes were intensively synthesized only in the last part of the ripening process.eng
dc.description.provenanceSubmitted by Luciana Ferreira (lucgeral@gmail.com) on 2014-08-06T14:45:42Z No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) dissertacaoalessandraduarte.pdf: 708957 bytes, checksum: b78a176c14d72047bdf0ffb5773c42bf (MD5)eng
dc.description.provenanceMade available in DSpace on 2014-08-06T14:45:42Z (GMT). No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) dissertacaoalessandraduarte.pdf: 708957 bytes, checksum: b78a176c14d72047bdf0ffb5773c42bf (MD5) Previous issue date: 2008eng
dc.description.resumoA variação na composição química do óleo essencial em populações silvestres e cultivadas de Eugenia dysenterica DC. (Myrtaceae) indicou a presença de dois grupos de óleos em relação à origem das amostras. O grupo I incluiu amostras cultivadas (subgrupo IA) ou majoritariamente silvestres (subgrupo IB) provenientes de Senador Canedo (SC), contendo altas percentagens de a-pineno (9,0 ± 2,3%), b-pineno (9,3 ± 2,6%), (Z)-b-ocimeno (5,9 ± 4,2%) e g-cadineno (27 ± 5%), limoneno (12 ± 9%) e óxido de cariofileno (7,4 ± 4,7%), respectivamente. O grupo II caracterizou-se pelas amostras coletadas em Campo Alegre de Goiás (CA), silvestres ou cultivadas, cujos constituintes majoritários foram o b-cariofileno (24 ± 8%), d-cadineno (13 ± 4%) e a-copaeno (9,6 ± 3,2%). A análise por correlação canônica indicou que limoneno, g-cadineno, óxido de cariofileno, Zn, Cu, Fe, Mn, médias mensais de temperatura e precipitação foram fortemente correlacionados às amostras silvestres de SC (subgrupo IB), enquanto (Z)-b-ocimeno, a-copaeno, b- cariofileno, a-humuleno, d-cadineno, e P correlacionaram-se às amostras silvestres de CA e a todas as amostras cultivadas, independentemente da origem da população (subgrupo IA e grupo II). Em todas as populações os óleos essenciais apresentaram predominantemente hidrocarbonetos sesquiterpênicos e as variações químicas observadas entre as populações parecem ser geneticamente determinadas (quimiotipos), com uma nítida influência de fatores edafo-climáticos sobre as amostras originadas da população de SC (ecótipo). Variações químicas na composição do óleo essencial de populações cultivadas de E. dysenterica nas estações seca e chuvosa indicaram, ainda, a presença de dois grupos de óleos em relação à origem e às estações de coleta. O grupo I inclui amostras coletadas na seca (subgrupo IA) e principalmente, amostras coletadas na chuva (subgrupo IB) originárias de Senador Canedo (SC), com elevadas quantidades de b-pineno (9,3 ± 2,6%), a- pinene (9,0 ± 2,3%), (Z)-b-ocimeno (5,9 ± 4,2%) e g-cadineno (17 ± 11%), limoneno (14 ± 9%) e b-pineno (8,6 ± 5,4%), respectivamente. No grupo II, que inclui amostras cultivadas provenientes de Campo Alegre de Goiás de ambas as estações, os principais constituintes foram b-cariofileno (32 ± 15%), d- v i i i cadineno (13 ± 6%) e a-copaeno (8,1 ± 4,0%). Também neste caso, os sesquiterpenos hidrocarbonetos predominaram em todas as populações amostradas e foi observado que a variação química dos óleos essenciais pode ser geneticamente determinada, além de possuir uma clara influência sazonal no caso das amostras provenientes da SC. Quanto aos óleos essenciais dos frutos de E. dysenterica, coletados durante três estádios de maturação, o grupo de constituinte mais abundante dos óleos essenciais foi os dos hidrocarbonetos monoterpenos representando cerca de 68% do total de compostos identificados. Limoneno (25,8% e 24,6%), (E)-b-ocimeno (20,3% e 21,7%) e b-pineno (12,0% e 14,2%) foram os constituintes majoritários nos estágios verdes e semi-maduros, respectivamente, enquanto g-muuroleno (25,8%), b-cariofileno (18,4%) e a- humuleno (15,4%) preponderaram nos frutos maduros. A concentração de monoterpenes foi elevado nos estágios verde e semi-maduros e diminuiu com o amadurecimento do fruto, enquanto os sesquiterpenos foram intensamente sintetizados apenas na última parte do processo de maturação.por
dc.formatapplication/pdf*
dc.identifier.citationDUARTE, Alessandra Rodrigues. Composição e variabilidade química dos óleos essenciais das folhas e frutos de Eugenia dysenterica. 2008. 55 f. Dissertação (Mestrado em Química) - Universidade Federal de Goiás, Goiânia, 2008.por
dc.identifier.urihttp://repositorio.bc.ufg.br/tede/handle/tde/2891
dc.languageporpor
dc.publisherUniversidade Federal de Goiáspor
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Química - IQ (RG)por
dc.publisher.initialsUFGpor
dc.publisher.programPrograma de Pós-graduação em Química (IQ)por
dc.relation.referencesADAMS, R.P. Identification of essential oil components by gas chromatography/quadrupole mass spectroscopy, 4th ed. Carol Stream: Allured, 2007. BARAZANI, O.; COHEN, Y.; FAIT, A.; DIMINSHTEIN, S.; DUDAI, N.; RAVID, U.; PUTIEVSKY, E.; FRIEDMAN, J. Chemotypic differentiation in indigenous populations of Foeniculum vulgare var. vulgare in Israel. Biochemical Systematics and Ecology 30, p. 721-731, 2002. BENZÉCRI, J.P. L’Analyse des données: la taxinomie. Tome1. Paris: Dunod, 1980. BORG-KARLSON, A.-K. Chemical and ethological studies of pollination in the genus Ophrys (orchidaceae). Phythochemistry 29, p. 1359-1387, 1990. BRYANT, J. P.; CHAPIN, F. S.; KLEIN, D. R.; Oikos 40, p. 357, 1983. CHENG, AX.; XIANG, C.Y.; LI, J.X.; YANG, C.Q.; HU, W.L.; WANG, L.J.; LOU, Y.G.; CHEN. X.Y. The rice (E)-β-caryphyllene synthase (OsTPS3) accounts for the major inducible volatile sesquiterpenes. Phytochemistry 68, p. 1632-1641, 2007. COSTA, T.R.; FERRI, P.H.; SANTOS, S.C.; OLIVEIRA, C.M.A.; LIÃO, L.M.; FERNANDES,O.F.L.; PAULA,J.R.; FERREIRA, H.D.; SALES, B.H.N.; SILVA, M.R.R. Antifungal activity of volatile constituents of Eugenia dysenterica leaf oil. Journal of ethnopharmacology 72, p. 111-117, 2000. CROCK J., WILDUNG M., CROTEAU R. Isolation and bacterial expression of a sesquiterpene synthase cDNA clone from peppermint (Mentha × piperita, L.) that produces the aphid alarm pheromone (E)-β-farnesene. Proceedings of the National Academy of Sciences of USA 94, p. 12833-12838, 1997. DAVID, E.F.S.; BOARO, C.S.F.; MARQUES, M.O.M. Rendimento e composição do óleo essencial de Mentha piperita L., culitivada em solução nutritive com diferentes níveis de fósforo. Revista Brasileira de PIantas Medicinais 8, p. 183- 188, 2006. DICKE, M., HILKER, M. Induced plant responses: from molecular to evolutionary biology. Basic and Applied Ecology 4, p. 3-14, 2003. EL-SAWI, S.A.; MOHAMED, M.A. Cumin herb as a new of essential oils and its response to foliar spray with some micro-elements. Food Chemistry 77, p. 75-80, 2002. FONSECA, A.; MUNIZ, I. A. F.; Informação sobre a cultura de espécies frutíferas da região de cerrado. Informe Agropecuário 16, p. 12-17, 1992. FRACARO, F.; ECHEVERRIGARAY, S. Micropropagation of Cunila galioides, a popular medicinal planto of south Brazil. Journal Plant Cell Tissue and Organ Culture 64, p. 1-4, 2001. GORALKA, R.J.L.; LANGENHEIM, J.H. Implications of foliar monoterpenoid variation among ontogenetic stages of the Califórnia bay tree (Umbellularia californica) for deer herbivory. Biochemical Systematics and Ecology 24, p. 13-23, 1996. HAIR, J.F.; ANDERSON, R.E.; TATHAM, R.L.; BLACK, W.C. Análise Multivariada de dados, 5a ed. Porto Alegre: Bookman, 2005. HARBORNE, J. B. Advances in Chemical Ecology. Natural Product Reports p. 327-347, 1993. LALEL, H.J.D., TAN, S.C. Aroma volatiles production during fruit ripening of ́Kensington Pride ́ mango. Postharvest Biology and Technology 27, p. 323-336, 2003. LEBART, L.; MORINEAU, A .; LAMBERT,T.; PLEUVRET,P. SAPD.N versión 2.5. Sistema Compatible para el Análisis de Datos. Saint Mandé: Centre International de Statistique et d’Informatique Apliques, 1994. LEE, L.S.; BROOKS, L.O.; HOMER, L.E.; ROSSETO, M.; HENRY, R.J.; BAVERSTOCK, P.R. Geographic variation in the essential oils and morphology of natural populations of Melaleuca alternifólia (Myrtaceae). Biochemical Systematics and Ecology 30, p. 343-360, 2002. LIMA, H.R.P.; KAPLAN, M.A.C.; CRUZ,A.V.M. Influência dos fatores abióticos na produção e variabilidade de terpenóides em plantas. Revista Floresta e Ambiente 10, p.71-77, 2003. LOPES, N.P.; NETO-GOBBO, L. Plantas medicinais: fatores de influência no conteúdo de metabólitos secundários. Química Nova 30, p. 374-381, 2007. LORENZI, L. Arvores Brasileiras: Manual de Identificacao e Cultivo de Plantas Arbóreas Nativas do Brasil, Vol. 2. Plantarum: Nova Odessa, SP, 1998. LOZIENE, K.; VENSKUTONIS, P.R. Influence of environmental and genetic factors on the stability of essential oil composition of Thymus pulegioides. Biochemical Systematics and Ecology 33, p. 517-525, 2005. MUNN, R.; TIEMANN, T.; SCHULZ, S.; HILKER, M. Analysis of volatiles from black pine (Pinus nigra): significance of wounding and egg deposition by a herbivorous sawfly. Phytochemistry 65, p. 3221-3230, 2004. NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, PC version of the NIST/EPA/NIH Mass Spectral Database, Department of Commerce, Gaithersburg, MD. U. S., 1998. PICAUD, S.; OLOFSSON, L.; BRODELIUS, M.; BRODELIUS, P.E. Expression, purification, and characterization of recombinant amorpha-4,11-diene synthase from Artemisia annua L. Archives of Biochemistry and Biophysics 436, p. 215-226, 2005. RANDRIANALIJAONA, J.A.; RAMANOELINA, P.A.R.; RASOARAHONA, J.R.E.; GAYDOU, E.M. Seasonal and chemotype influences on the chemical composition of Lantana camara L. essential oils from Madagascar. Analytica Chimica Acta 545, p. 46-52, 2005. RAVEN, P.H.; EVERT, R.F.; EICHHORN, S.E. Biologia Vegetal, 6a ed. Rio de Janeiro; Editora Guanabara Koogan, 2001. ROBLES, C.; GARNIZO, S. Infraspecific variability in the essential oil composition of Cistus monspeliensis leaves. Phytochemistry 53, 71-75, 2000. SANO, S. M.; FONSECA, C. E. L.; RIBEIRO, J. F.; OGA, F. M.; LUIZ, A. J. B.; Pesquisa Agropecuária Brasileira 30, p. 5, 1995. SHARON-ASA, L.; SHALIT, M.; FRYDMAN, A.; BAR, E.; HOLLAND, D.; OR, E.; LAVI, U.; LEWINSOHN E. AND EYAL, Y. Citrus fruit and aroma byosynthesis: isolation, functional characterization, and developmental regulation of Cstps 1, a key gene in the production of the sesquiterpene aroma compound valencene. Plant Journal 36, p. 664-674, 2003. SILVA, N.A.; OLIVEIRA, F.F.; COSTA, L.C.B.; BIZZO, H.R.; OLIVEIRA, R.A. Caracterização química do óleo essencial de erva cidreira (Lippia alba (Mill.) N. E. Br.) cultivada em Ilhéus na Bahia. Revista Brasileira de Plantas Medicinais 8, p. 52-55, 2006. SILVA, R.S.M.; Caracterização de sub-populações de cagaita (Eugenia dysenterica DC.) do sudeste de Goiás. Tese de Mestrado, Universidade Federal de Goiás, 1999a. SILVA, S.C.; Manual de Análises Químicas de Solos, Plantas e Fertilizantes, 1 ed., Embrapa: Brasília, 1999b. SIMÕES, C.M.O.; SCHENKEL, E. P.; GOSMANN, G.; MELLO, J.C.P.; MENTZ, L. A.; PETROVICK, P. R. Farmacognosia: da Planta ao Medicamento, 5a Alegre: UFRGS/EDUFSC, 2005. SRIVASTAVA, R.K.; SINGH, A.K.; KALRA, A.; TOMAR, V.K.S.; BANSAL, R.P.; PATRA, D.D.; CHAND, S.; NAGVI, A.A.; SHARMA, S., KUMAR, S. Characteristics of menthol mint Mentha arvensis cultivated on industrial scale in the Indo-Gangetic plains. Industrial Crops and Products 15, p. 189-198, 2002. TAIZ, L.; ZEIGER, E. Fisiologia Vegetal, 3a ed. Porto Alegre: Artmed, 2004. TAVEIRA, F.S.N.; LIMA, W.N.; ANDRADE, E.H.A.; MAIA, J.G.S. Seasonal essential oil vatiation of Aniba canelilla. Biochemical Systematics and Ecology 31, p. 69-75, 2003. TELLES, M.P.C.; SILVA, R.S.M.; CHAVES, L.J.; COELHO,A.S.G.; FILHO, J.A.F.D. Divergência entre populações de cagaiteira (Eugenia dysenterica) em resposta a padrões edáficos e distribuição espacial. Pesquisa Agropecuária Brasileira 36, p.1387-1394, 2001. VAN DEN DOOL, H.; KRATZ, P.D.J.A. Generalization of the Retention Index system including linear temperature programmed gás-liquid partition chromatography. Journal of Chromatograohy 11, p. 463-471, 1963. ZUCCHI, M.I.; PINHEIRO, J.B.; CHAVES, L.J.; COELHO, A.S.G.; COUTO, M.A.; MORAIS, L.K.; VENCOVSKY, R. Genetic structure and gene flow of Eugenia dysenterica natural populations. Pesquisa Agropecuária Brasileira 40, p.975-980, 2005. ZHU, H. L.; ZHU, B. Z.; FU, D. Q.; Y.; HÃO, Y. L. AND LUO, Y. B. Role of ethylene in the biosynthetic pathways of aroma volatiles in ripening fruit. Russian Journal of Plant Physiology 52, p. 691-695, 2005. WARD, J.H. Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association 58, p.238-244, 1963. WOLD, A., ERIKSSON, L. Statistical validation of QSAR results. In: Waterbeemd, H. (Ed.), Chemometric Methods in Molecular Design, vol. 2. VCH, Weinheim, Germany, p. 309-318. 1995.por
dc.rightsAcesso abertopor
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectCagaitapor
dc.subjectóelos essenciaispor
dc.subjectEugenia dysentericapor
dc.subjectCagaitapor
dc.subjectessential oilspor
dc.subjectEugenia dysentericapor
dc.subject.cnpqCIENCIAS EXATAS E DA TERRA::QUIMICApor
dc.thumbnail.urlhttp://repositorio.bc.ufg.br/tede/retrieve/6071/dissertacaoalessandraduarte.pdf.jpg*
dc.titleComposição e variabilidade química dos óleos essenciais das folhas e frutos de Eugenia dysentericapor
dc.title.alternativeVariability and chemical composition of essential oils from the leaves and fruits of Eugenia dysentericaeng
dc.typeDissertaçãopor

Arquivos

Pacote Original
Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
dissertacaoalessandraduarte.pdf
Tamanho:
692.34 KB
Formato:
Adobe Portable Document Format
Descrição:
Dissertação - PPGQUI/RG - Alessandra Rodrigues Duarte
Licença do Pacote
Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
2.09 KB
Formato:
Item-specific license agreed upon to submission
Descrição: