On the limit cycles bifurcating from the periodic orbits of a Hamiltonian system
Carregando...
Data
Título da Revista
ISSN da Revista
Título de Volume
Editor
Resumo
This paper concerns the weak 16th Hilbert problem and considers the Hamiltonian center ẋ=−y2n−1, ẏ=x2n−1, and we perturb it by all polynomials of degree 2n−1 for n=2,3,4,5,6,7,8. We prove that the maximum number of limit cycles that can bifurcate from the periodic orbits of this center for n=2,3,4,5,6,7,8, under the mentioned perturbations and using the averaging theory of first order, is 1,4,3,2,5,6,7, respectively.
Descrição
Palavras-chave
Citação
ANACONA, Gerardo H.; LLIBRE, Jaume; FREITAS, Bruno. On the limit cycles bifurcating from the periodic orbits of a Hamiltonian system. International Journal of Bifurcation and Chaos, Singapore, v. 35, n. 4, e2550040, 2025. DOI: 10.1142/S0218127425500403. Disponível em: https://www.worldscientific.com/doi/abs/10.1142/S0218127425500403?download=true&srsltid=AfmBOormyxcaKcxODKuIBvIEEhO_YiQLMOIS2GtydCFpbe7XfAA-Wyip&journalCode=ijbc. Acesso em: 8 dez. 2025.