On the limit cycles bifurcating from the periodic orbits of a Hamiltonian system

Carregando...
Imagem de Miniatura

Data

Título da Revista

ISSN da Revista

Título de Volume

Editor

Resumo

This paper concerns the weak 16th Hilbert problem and considers the Hamiltonian center ẋ=−y2n−1, ẏ=x2n−1, and we perturb it by all polynomials of degree 2n−1 for n=2,3,4,5,6,7,8. We prove that the maximum number of limit cycles that can bifurcate from the periodic orbits of this center for n=2,3,4,5,6,7,8, under the mentioned perturbations and using the averaging theory of first order, is 1,4,3,2,5,6,7, respectively.

Descrição

Citação

ANACONA, Gerardo H.; LLIBRE, Jaume; FREITAS, Bruno. On the limit cycles bifurcating from the periodic orbits of a Hamiltonian system. International Journal of Bifurcation and Chaos, Singapore, v. 35, n. 4, e2550040, 2025. DOI: 10.1142/S0218127425500403. Disponível em: https://www.worldscientific.com/doi/abs/10.1142/S0218127425500403?download=true&srsltid=AfmBOormyxcaKcxODKuIBvIEEhO_YiQLMOIS2GtydCFpbe7XfAA-Wyip&journalCode=ijbc. Acesso em: 8 dez. 2025.