On the limit cycles bifurcating from the periodic orbits of a Hamiltonian system

dc.creatorAnacona Erazo, Gerardo Homero
dc.creatorLlibre, Jaume
dc.creatorFreitas, Bruno Rodrigues de
dc.date.accessioned2025-12-30T13:14:27Z
dc.date.available2025-12-30T13:14:27Z
dc.date.issued2025
dc.description.abstractThis paper concerns the weak 16th Hilbert problem and considers the Hamiltonian center ẋ=−y2n−1, ẏ=x2n−1, and we perturb it by all polynomials of degree 2n−1 for n=2,3,4,5,6,7,8. We prove that the maximum number of limit cycles that can bifurcate from the periodic orbits of this center for n=2,3,4,5,6,7,8, under the mentioned perturbations and using the averaging theory of first order, is 1,4,3,2,5,6,7, respectively.
dc.identifier.citationANACONA, Gerardo H.; LLIBRE, Jaume; FREITAS, Bruno. On the limit cycles bifurcating from the periodic orbits of a Hamiltonian system. International Journal of Bifurcation and Chaos, Singapore, v. 35, n. 4, e2550040, 2025. DOI: 10.1142/S0218127425500403. Disponível em: https://www.worldscientific.com/doi/abs/10.1142/S0218127425500403?download=true&srsltid=AfmBOormyxcaKcxODKuIBvIEEhO_YiQLMOIS2GtydCFpbe7XfAA-Wyip&journalCode=ijbc. Acesso em: 8 dez. 2025.
dc.identifier.doi10.1142/S0218127425500403
dc.identifier.issn0218-1274
dc.identifier.issne- 1793-6551
dc.identifier.urihttps://www.worldscientific.com/doi/abs/10.1142/S0218127425500403?download=true&srsltid=AfmBOormyxcaKcxODKuIBvIEEhO_YiQLMOIS2GtydCFpbe7XfAA-Wyip&journalCode=ijbc
dc.language.isoeng
dc.publisher.countryOutros
dc.publisher.departmentInstituto de Matemática e Estatística - IME (RMG)
dc.rightsAcesso Restrito
dc.subjectHamiltonian center
dc.subjectLimit cycleweak
dc.subjectHilbert problem
dc.titleOn the limit cycles bifurcating from the periodic orbits of a Hamiltonian system
dc.typeArtigo

Arquivos

Licença do Pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: