On the limit cycles bifurcating from the periodic orbits of a Hamiltonian system
| dc.creator | Anacona Erazo, Gerardo Homero | |
| dc.creator | Llibre, Jaume | |
| dc.creator | Freitas, Bruno Rodrigues de | |
| dc.date.accessioned | 2025-12-30T13:14:27Z | |
| dc.date.available | 2025-12-30T13:14:27Z | |
| dc.date.issued | 2025 | |
| dc.description.abstract | This paper concerns the weak 16th Hilbert problem and considers the Hamiltonian center ẋ=−y2n−1, ẏ=x2n−1, and we perturb it by all polynomials of degree 2n−1 for n=2,3,4,5,6,7,8. We prove that the maximum number of limit cycles that can bifurcate from the periodic orbits of this center for n=2,3,4,5,6,7,8, under the mentioned perturbations and using the averaging theory of first order, is 1,4,3,2,5,6,7, respectively. | |
| dc.identifier.citation | ANACONA, Gerardo H.; LLIBRE, Jaume; FREITAS, Bruno. On the limit cycles bifurcating from the periodic orbits of a Hamiltonian system. International Journal of Bifurcation and Chaos, Singapore, v. 35, n. 4, e2550040, 2025. DOI: 10.1142/S0218127425500403. Disponível em: https://www.worldscientific.com/doi/abs/10.1142/S0218127425500403?download=true&srsltid=AfmBOormyxcaKcxODKuIBvIEEhO_YiQLMOIS2GtydCFpbe7XfAA-Wyip&journalCode=ijbc. Acesso em: 8 dez. 2025. | |
| dc.identifier.doi | 10.1142/S0218127425500403 | |
| dc.identifier.issn | 0218-1274 | |
| dc.identifier.issn | e- 1793-6551 | |
| dc.identifier.uri | https://www.worldscientific.com/doi/abs/10.1142/S0218127425500403?download=true&srsltid=AfmBOormyxcaKcxODKuIBvIEEhO_YiQLMOIS2GtydCFpbe7XfAA-Wyip&journalCode=ijbc | |
| dc.language.iso | eng | |
| dc.publisher.country | Outros | |
| dc.publisher.department | Instituto de Matemática e Estatística - IME (RMG) | |
| dc.rights | Acesso Restrito | |
| dc.subject | Hamiltonian center | |
| dc.subject | Limit cycleweak | |
| dc.subject | Hilbert problem | |
| dc.title | On the limit cycles bifurcating from the periodic orbits of a Hamiltonian system | |
| dc.type | Artigo |
Arquivos
Licença do Pacote
1 - 1 de 1
Carregando...
- Nome:
- license.txt
- Tamanho:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descrição: