Comparação de arquiteturas de redes neurais convolucionais para a detecção de doenças foliares do tomateiro
Nenhuma Miniatura disponível
Data
2024-12-20
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de Goiás
Resumo
The automated recognition of leaf diseases is one of the main challenges of Agriculture 4.0, requiring methodologies that integrate agronomic knowledge, image collection for monitoring, and advanced machine learning techniques. This study aims to perform a comparative analysis of different convolutional neural network (CNN) architectures applied to the detection of leaf diseases in tomato plants, including target spot. Three widely recognized architectures were used: ResNet-50, Inceptionv3, and VGG-16, exploring combinations of hyperparameters such as learning rate, optimizers, and the use of weight decay. Additionally, activation maps were employed to identify relevant visual patterns that influence the models’ decisions. The results show that ResNet-50 achieved the best overall performance and stability, followed by Inception-v3, while VGG-16 exhibited greater sensitivity to training configurations. Through this analysis, we aim to understand
the impact of these variations on network performance, providing valuable insights for improving models applied to crop protection management and precision agriculture.
Descrição
Palavras-chave
Visao computacional, Inteligência artificial, Redes neurais convolucionais, Agricultura 4.0, Tomateiro, Computer vision, Artificial intelligence, Convolutional neural networks, Agriculture 4.0, Tomato plant
Citação
LINDOLFO, Glauber Borges; CHAVES, Ian Marcos da Cruz. Comparação de arquiteturas de redes neurais convolucionais para a detecção de doenças foliares do tomateiro. 2024. 24 f. Trabalho de Conclusão de Curso (Bacharelado em Engenharia de Computação) – Escola de Engenharia Elétrica, Mecânica e
Computação, Universidade Federal de Goiás, Goiânia, 2024.