MALDI(+) FT-ICR mass spectrometry (MS) combined with machine learning toward saliva-based diagnostic screening for COVID-19

dc.creatorAlmeida, Camila Medeiros de
dc.creatorMotta, Larissa Campos
dc.creatorFolli, Gabriely Silveira
dc.creatorMarcarini, Wena Dantas
dc.creatorCosta, Camila Alves
dc.creatorVilela, Ana Carolina Serafim
dc.creatorBarauna, Valerio Garrone
dc.creatorMartin, Francis L.
dc.creatorSingh, Maneesh N.
dc.creatorCampos, Luciene Cristina Gastalho
dc.creatorChaves, Andréa Rodrigues
dc.date.accessioned2023-05-31T12:59:52Z
dc.date.available2023-05-31T12:59:52Z
dc.date.issued2022
dc.description.abstractRapid identification of existing respiratory viruses in biological samples is of utmost importance in strategies to combat pandemics. Inputting MALDI FT-ICR MS (matrix-assisted laser desorption/ionization Fouriertransform ion cyclotron resonance mass spectrometry) data output into machine learning algorithms could hold promise in classifying positive samples for SARS-CoV-2. This study aimed to develop a fast and effective methodology to perform saliva-based screening of patients with suspected COVID-19, using the MALDI FT-ICR MS technique with a support vector machine (SVM). In the method optimization, the best sample preparation was obtained with the digestion of saliva in 10 μL of trypsin for 2 h and the MALDI analysis, which presented a satisfactory resolution for the analysis with 1 M. SVM models were created with data from the analysis of 97 samples that were designated as SARSCoV-2 positives versus 52 negatives, confirmed by RT-PCR tests. SVM1 and SVM2 models showed the best results. The calibration group obtained 100% accuracy, and the test group 95.6% (SVM1) and 86.7% (SVM2). SVM1 selected 780 variables and has a false negative rate (FNR) of 0%, while SVM2 selected only two variables with a FNR of 3%. The proposed methodology suggests a promising tool to aid screening for COVID-19.pt_BR
dc.identifier.citationALMEIDA, Camila M. de et al. MALDI(+) FT-ICR mass spectrometry (MS) combined with machine learning toward saliva-based diagnostic screening for COVID-19. Journal of Proteome Research, Washington, v. 21, n. 8, p. 1868-1875, 2022. DOI: 10.1021/acs.jproteome.2c00148. Disponível em: https://pubs.acs.org/doi/10.1021/acs.jproteome.2c00148. Acesso em: 17 maio 2023.pt_BR
dc.identifier.doihttps://doi.org/10.1021/acs.jproteome.2c00148
dc.identifier.issne- 1535-3893
dc.identifier.issn1535-3907
dc.identifier.urihttp://repositorio.bc.ufg.br/handle/ri/22649
dc.language.isoengpt_BR
dc.publisher.countryEstados unidospt_BR
dc.publisher.departmentInstituto de Química - IQ (RMG)pt_BR
dc.rightsAcesso Abertopt_BR
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectCOVID-19pt_BR
dc.subjectMALDI FT-ICR MSpt_BR
dc.subjectMachine learningpt_BR
dc.subjectSalivapt_BR
dc.subjectSARS-CoV-2pt_BR
dc.subjectScreeningpt_BR
dc.titleMALDI(+) FT-ICR mass spectrometry (MS) combined with machine learning toward saliva-based diagnostic screening for COVID-19pt_BR
dc.typeArtigopt_BR

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
Artigo - Camila Medeiros de Almeida - 2023.pdf
Tamanho:
2.68 MB
Formato:
Adobe Portable Document Format

Licença do Pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: