Genetic drift and uniform selection shape evolution of most traits in Eugenia dysenterica DC. (Myrtaceae)

dc.creatorNovaes, Carolina Ribeiro Diniz Boaventura
dc.creatorNovaes, Evandro
dc.creatorMota, Elias Emanuel Silva
dc.creatorTelles, Mariana Pires de Campos
dc.creatorCoelho, Alexandre Siqueira Guedes
dc.creatorChaves, Lázaro José
dc.date.accessioned2023-07-20T11:53:23Z
dc.date.available2023-07-20T11:53:23Z
dc.date.issued2018
dc.description.abstractKnowing how microevolutionary processes, such as genetic drift and natural selection, shape variation in adaptive traits is strategic for conservation measures. One way to estimate local adaptation is to compare divergences in quantitative traits (QST) and neutral loci (FST). Therefore, we have assessed the pattern of phenotypic and molecular genetic divergence among natural subpopulations of the fruit tree Eugenia dysenterica DC. A provenance and progeny test was performed to assess the quantitative traits of the subpopulations collected in a wide distribution area of the species in the Brazilian Cerrado. The sampled environments are in a biodiversity hotspot with heterogeneous soil and climate conditions. By associating quantitative trait variation in initial seedling development with neutral microsatellite marker variation, we tested the local adaptation of the traits by the QST–FST contrast. Genetic drift was prevalent in the phenotypic differentiation among the subpopulations, although the traits seedling emergence time and root green mass, which are relevant for adaptation to the Cerrado climate, showed signs of uniform selection. Our results suggest that E. dysenterica has a spatial genetic structure divided into two large groups, separated by a line that divides the Cerrado biome in a southwestern to northeastern direction. This structure must be taken into account for managing E. dysenterica genetic resources both for conservation and breeding purposes.pt_BR
dc.identifier.citationBOAVENTURA-NOVAES, Carolina R. D. et al. Genetic drift and uniform selection shape evolution of most traits in Eugenia dysenterica DC. (Myrtaceae). Tree Genetics & Genomes, Berlin, v. 14, e76, 2018. DOI: 10.1007/s11295-018-1289-2. Disponível em: https://link.springer.com/article/10.1007/s11295-018-1289-2. Acesso em: 18 jun. 2023.pt_BR
dc.identifier.doi10.1007/s11295-018-1289-2
dc.identifier.issn1614-2942
dc.identifier.issne- 1614-2950
dc.identifier.urihttps://link.springer.com/article/10.1007/s11295-018-1289-2
dc.language.isoengpt_BR
dc.publisher.countryAlemanhapt_BR
dc.publisher.departmentInstituto de Ciências Biológicas - ICB (RMG)pt_BR
dc.rightsAcesso Restritopt_BR
dc.subjectCagaita treept_BR
dc.subjectGenetic divergencept_BR
dc.subjectQSTpt_BR
dc.subjectFSTpt_BR
dc.subjectCerradopt_BR
dc.titleGenetic drift and uniform selection shape evolution of most traits in Eugenia dysenterica DC. (Myrtaceae)pt_BR
dc.typeArtigopt_BR

Arquivos