Biosynthesis of enhanced magnetic iron Oxide@ZnO nanocomposites with incorporated Ni species for the photodegradation of dyes

dc.creatorPrescilio, Isabella Cristina
dc.creatorAbe, Saulo Henrique Mendes
dc.creatorBakuzis, Andris Figueiroa
dc.creatorVasconcelos, Leonardo Gomes de
dc.creatorSouza, Ericson Hamisses Nunes
dc.creatorMorais, Thaines Leonardo Henrique de
dc.creatorSilva, Virgínia Cláudia Paulino
dc.creatorFreitas, Renato Garcia
dc.creatorJacinto, Marcos José
dc.date.accessioned2025-08-21T13:05:19Z
dc.date.available2025-08-21T13:05:19Z
dc.date.issued2025
dc.description.abstractThe textile industry generates approximately 700 million kilograms of dyes annually, with about 10–20 % improperly discharged into the environment, poing significant risks to aquatic ecosystems and human health. This study reports the sustainable biosynthesis of FeOx@ZnO (FZ) and FeOx@ZnO-Ni (FZNi) nanocomposites using hydroethanolic extract and infusion from Magonia pubescens A. St. Hil. Characterization techniques confirmed their crystalline structure, composition, morphology and optical properties. Photodegradation tests using rhodamine B under visible light for 300 min showed superior efficiency for FZNi (96.8 %) compared to FZ (87.5 %), attributed to enhanced light absorption from Ni doping, which lowers the band gap. Density Functional Theory (DFT) calculations analyzed ZnO(100) and ZnO(101) surfaces. The optimized ZnO(100) surface exhibited a decrease in the c lattice parameter from 5.209 Å to 4.935 Å, while ZnO(1 0 1) displayed triclinic characteristics with a lattice parameter set of a = 3.23 Å, b = 3.07 Å, and c = 6.02 Å. Partial density of states (PDOS) analysis revealed a higher band gap of 1.93 eV for ZnO(1 0 1), than the experimental value of 3.46 eV. Substitutional doping with Ni in ZnO(1 0 1) significantly reduced the band gap energies to 1.08 eV and 1.41 eV, respectively, while introducing new defect states near the valence band due to d-orbital contributions from the doped cations. These theoretical findings, aligned with experimental results, demonstrate that partial Ni doping and the presence of Ni nanoparticles on the material’s surface effectively narrow the band gap in ZnO(1 0 1). Ni-ZnO(1 0 1) exhibits the most significant reduction, enhancing its photodegradation performance.
dc.identifier.citationPRESCILIO, Isabella C. et al. Biosynthesis of enhanced magnetic iron Oxide@ZnO nanocomposites with incorporated Ni species for the photodegradation of dyes. Applied Surface Science, Amsterdam, v. 702, e163385, 2025. DOI: 10.1016/j.apsusc.2025.163385. Disponível em: https://www.sciencedirect.com/science/article/pii/S0169433225010992. Acesso em: 20 ago. 2025.
dc.identifier.doi10.1016/j.apsusc.2025.163385
dc.identifier.issn0169-4332
dc.identifier.issne- 1873-5584
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0169433225010992
dc.language.isoeng
dc.publisher.countryHolanda
dc.publisher.departmentInstituto de Física - IF (RMG)
dc.rightsAcesso Restrito
dc.subjectBiosynthesis
dc.subjectIron oxide
dc.subjectMagonia pubescens A. St. Hil.
dc.subjectPhotodegradation of dyes
dc.subjectRietveld refinement
dc.subjectMaterials modeling
dc.subjectDFT
dc.subjectNanoparticle
dc.titleBiosynthesis of enhanced magnetic iron Oxide@ZnO nanocomposites with incorporated Ni species for the photodegradation of dyes
dc.typeArtigo

Arquivos

Licença do Pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: