Automated framework for developing predictive machine learning models for data-driven drug discovery

dc.creatorNeves, Bruno Junior
dc.creatorMoreira Filho, José Teófilo
dc.creatorSilva, Arthur de Carvalho e
dc.creatorBorba, Joyce Villa Verde Bastos
dc.creatorMottin, Melina
dc.creatorAlves, Vinicius de Medeiro
dc.creatorBraga, Rodolpho de Campos
dc.creatorMuratov, Eugene
dc.creatorAndrade, Carolina Horta
dc.date.accessioned2024-09-12T15:13:33Z
dc.date.available2024-09-12T15:13:33Z
dc.date.issued2021
dc.description.abstractThe increasing availability of extensive collections of chemical compounds associated with experimental data provides an opportunity to build predictive quantitative structure-activity relationship (QSAR) models using machine learning (ML) algorithms. These models can promote data-driven decisions and have the potential to speed up the drug discovery process and reduce their failure rates. However, many essential aspects of data preparation and modeling are not available in any standalone program. Here, we developed an automated framework for the curation of chemogenomics data and to develop QSAR models for virtual screening using the open-source KoNstanz Information MinEr (KNIME) program. The workflow includes four modules: (i) dataset preparation and curation; (ii) chemical space analysis and structure-activity relationships (SAR) rules; (iii) modeling; and (iv) virtual screening (VS). As case studies, we applied these workflows to four datasets associated with different endpoints. The implemented protocol can efficiently curate chemical and biological data in public databases and generates robust QSAR models. We provide scientists a simple and guided cheminformatics workbench following the best practices widely accepted by the community, in which scientists can adapt to solve their research problems. The workflows are freely available for download at GitHub and LabMol web portals.
dc.identifier.citationNEVES, Bruno J. et al. Automated framework for developing predictive machine learning models for data-driven drug discovery. Journal of the Brazilian Chemical Society, São Paulo, v. 32, n. 1, p. 110-122, 2021. DOI: 10.21577/0103-5053.20200160. Disponível em: https://www.scielo.br/j/jbchs/a/QsHTMQgyK7zPGMtnrVYFh4b/?lang=en. Acesso em: 5 set. 2024.
dc.identifier.doi10.21577/0103-5053.20200160
dc.identifier.issn0103-5053
dc.identifier.issne- 1678-4790
dc.identifier.urihttp://repositorio.bc.ufg.br//handle/ri/25508
dc.language.isoeng
dc.publisher.countryBrasil
dc.publisher.departmentFaculdade de Farmácia - FF (RMG)
dc.rightsAcesso Aberto
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectDrug discovery
dc.subjectKNIME
dc.subjectPredictive modeling
dc.subjectMachine learning
dc.subjectVirtual screening
dc.titleAutomated framework for developing predictive machine learning models for data-driven drug discovery
dc.typeArtigo

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
Artigo - Bruno Junior Neves - 2021.pdf
Tamanho:
4.43 MB
Formato:
Adobe Portable Document Format

Licença do Pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: