Woody aboveground biomass mapping of the brazilian savanna with a multi-sensor and machine learning approach

dc.creatorBispo, Polyanna da Conceição
dc.creatorRodríguez-Veiga, Pedro
dc.creatorZimbres, Bárbara de Queiroz Carvalho
dc.creatorMiranda, Sabrina do Couto de
dc.creatorCezare, Cassio Henrique Giusti
dc.creatorFleming, Sam
dc.creatorBaldacchino, Francesca
dc.creatorLouis, Valentin
dc.creatorRains, Dominik
dc.creatorGarcia, Mariano
dc.creatorEspírito-Santo, Fernando Del Bon
dc.creatorRoitman, Iris
dc.creatorPacheco-Pascagaza, Ana María
dc.creatorGou, Yaqing
dc.creatorRoberts, John
dc.creatorBarrett, Kirsten
dc.creatorFerreira Junior, Laerte Guimaraes
dc.creatorShimbo, Júlia Zanin
dc.creatorAlencar, Ane Auxiliadora Costa
dc.creatorBustamante, Mercedes Maria da Cunha
dc.creatorWoodhouse, Iain Hector
dc.creatorSano, Edson Eyji
dc.creatorOmetto, Jean Pierre Henry Balbaud
dc.creatorTansey, Kevin
dc.creatorBalzter, Heiko
dc.date.accessioned2024-07-30T18:31:50Z
dc.date.available2024-07-30T18:31:50Z
dc.date.issued2020
dc.description.abstractThe tropical savanna in Brazil known as the Cerrado covers circa 23% of the Brazilian territory, but only 3% of this area is protected. High rates of deforestation and degradation in the woodland and forest areas have made the Cerrado the second-largest source of carbon emissions in Brazil. However, data on these emissions are highly uncertain because of the spatial and temporal variability of the aboveground biomass (AGB) in this biome. Remote-sensing data combined with local vegetation inventories provide the means to quantify the AGB at large scales. Here, we quantify the spatial distribution of woody AGB in the Rio Vermelho watershed, located in the centre of the Cerrado, at a high spatial resolution of 30 metres, with a random forest (RF) machine-learning approach. We produced the first high-resolution map of the AGB for a region in the Brazilian Cerrado using a combination of vegetation inventory plots, airborne light detection and ranging (LiDAR) data, and multispectral and radar satellite images (Landsat 8 and ALOS-2/PALSAR-2). A combination of random forest (RF) models and jackknife analyses enabled us to select the best remote-sensing variables to quantify the AGB on a large scale. Overall, the relationship between the ground data from vegetation inventories and remote-sensing variables was strong (R2 = 0.89), with a root-mean-square error (RMSE) of 7.58 Mg ha−1 and a bias of 0.43 Mg ha−1.
dc.identifier.citationBISPO, Polyanna da Conceição et al. Woody aboveground biomass mapping of the brazilian savanna with a multi-sensor and machine learning approach. Remote Sensing, Basileia, v. 12, n. 17, e2685, 2020. DOI: 10.3390/rs12172685. Disponível em: https://www.mdpi.com/2072-4292/12/17/2685. Acesso em: 25 jul. 2024.
dc.identifier.doi10.3390/rs12172685
dc.identifier.issne- 2072-4292
dc.identifier.urihttp://repositorio.bc.ufg.br//handle/ri/25139
dc.language.isopor
dc.publisher.countryBrasil
dc.publisher.departmentInstituto de Estudos Socioambientais - IESA (RMG)
dc.rightsAcesso Aberto
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectAboveground biomass
dc.subjectCerrado ecosystem
dc.subjectRandom forest
dc.subjectSAR
dc.titleWoody aboveground biomass mapping of the brazilian savanna with a multi-sensor and machine learning approach
dc.typeArtigo

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
Artigo - Laerte Guimaraes Ferreira Junior - 2020.pdf
Tamanho:
7.53 MB
Formato:
Adobe Portable Document Format

Licença do Pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: