Schistosomiasis drug discovery in the era of automation and artificial intelligence

dc.creatorMoreira Filho, José Teófilo
dc.creatorSilva, Arthur de Carvalho e
dc.creatorDantas, Rafael Ferreira
dc.creatorGomes, Bárbara Figueira
dc.creatorSouza Neto, Lauro Ribeiro de
dc.creatorBrandão Neto, José
dc.creatorOwens, Raymond J.
dc.creatorFurnham, Nicholas
dc.creatorNeves, Bruno Junior
dc.creatorSilva Junior, Floriano Paes
dc.date.accessioned2024-09-12T14:16:24Z
dc.date.available2024-09-12T14:16:24Z
dc.date.issued2021
dc.description.abstractSchistosomiasis is a parasitic disease caused by trematode worms of the genus Schistosoma and affects over 200 million people worldwide. The control and treatment of this neglected tropical disease is based on a single drug, praziquantel, which raises concerns about the development of drug resistance. This, and the lack of efficacy of praziquantel against juvenile worms, highlights the urgency for new antischistosomal therapies. In this review we focus on innovative approaches to the identification of antischistosomal drug candidates, including the use of automated assays, fragment based screening, computer-aided and artificial intelligence-based computational methods. We highlight the current developments that may contribute to optimizing research outputs and lead to more effective drugs for this highly prevalent disease, in a more cost-effective drug discovery endeavor.
dc.identifier.citationMOREIRA-FILHO, José T. et al. Schistosomiasis drug discovery in the era of automation and artificial intelligence. Frontiers in Immunology, Lausanne, v. 12, e642383, 2021. DOI: 10.3389/fimmu.2021.642383. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8203334/. Acesso em: 6 set. 2024.
dc.identifier.doi10.3389/fimmu.2021.642383
dc.identifier.issne- 1664-3224
dc.identifier.urihttp://repositorio.bc.ufg.br//handle/ri/25497
dc.language.isoeng
dc.publisher.countrySuica
dc.publisher.departmentFaculdade de Farmácia - FF (RMG)
dc.rightsAcesso Aberto
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectSchistosomiasis
dc.subjectDrug discovery
dc.subjectArtificial intelligence
dc.subjectFragment-based drug discovery
dc.subjectPhenotypic screening
dc.subjectTarget-based screening
dc.titleSchistosomiasis drug discovery in the era of automation and artificial intelligence
dc.typeArtigo

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
Artigo - José Teófilo Moreira Filho - 2021.pdf
Tamanho:
2.29 MB
Formato:
Adobe Portable Document Format

Licença do Pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: