Near infrared biomimetic hybrid magnetic nanocarrier for MRI-guided thermal therapy

dc.creatorRocha, João Victor Ribeiro
dc.creatorKrause, Rafael Freire
dc.creatorRibeiro, Carlos Eduardo
dc.creatorOliveira, Nathalia Correa de Almeida
dc.creatorSousa, Lucas Ribeiro de
dc.creatorSantos Junior, Juracy Leandro dos
dc.creatorCastro, Samuel de Melo
dc.creatorValadares, Marize Campos
dc.creatorPinto, Mauro Cunha Xavier
dc.creatorBakuzis, Andris Figueiroa
dc.date.accessioned2025-08-21T12:45:18Z
dc.date.available2025-08-21T12:45:18Z
dc.date.issued2025
dc.description.abstractCell-membrane hybrid nanoparticles (NPs) are designed to improve drug delivery, thermal therapy, and immunotherapy for several diseases. Here, we report the development of distinct biomimetic magnetic nanocarriers containing magnetic nanoparticles encapsulated in vesicles and IR780 near-infrared dyes incorporated in the membranes. Distinct cell membranes are investigated, red blood cell (RBC), melanoma (B16F10), and glioblastoma (GL261). Hybrid nanocarriers containing synthetic lipids and a cell membrane are designed. The biomedical applications of several systems are compared. The inorganic nanoparticle consisted of Mn-ferrite nanoparticles with a core diameter of 15 ± 4 nm. TEM images show many multicore nanostructures (∼40 nm), which correlate with the hydrodynamic size. Ultrahigh transverse relaxivity values are reported for the magnetic NPs, 746 mM−1s−1, decreasing respectively to 445 mM−1s−1 and 278 mM−1s−1 for the B16F10 and GL261 hybrid vesicles. The ratio of relaxivities r2/r1 decreased with the higher encapsulation of NPs and increased for the biomimetic liposomes. Therapeutic temperatures are achieved by both, magnetic nanoparticle hyperthermia and photothermal therapy. Photothermal conversion efficiency ∼25−30% are reported. Cell culture revealed lower wrapping times for the biomimetic vesicles. In vivo experiments with distinct routes of nanoparticle administration were investigated. Intratumoral injection proved the nanoparticle-mediated PTT efficiency. MRI and near-infrared images showed that the nanoparticles accumulate in the tumor after intravenous or intraperitoneal administration. Both routes benefit from MRI-guided PTT and demonstrate the multimodal theranostic applications for cancer therapy.
dc.identifier.citationROCHA, João Victor Ribeiro et al. Near infrared biomimetic hybrid magnetic nanocarrier for MRI-guided thermal therapy. ACS Applied Materials & Interfaces, Washington, v. 17, n. 9, p. 13094-13110, 2025. DOI: 10.1021/acsami.4c03434. Disponível em: https://pubs.acs.org/doi/10.1021/acsami.4c03434. Acesso em: 20 ago. 2025.
dc.identifier.doi10.1021/acsami.4c03434
dc.identifier.issn1944-8244
dc.identifier.issne- 1944-8252
dc.identifier.urihttps://repositorio.bc.ufg.br//handle/ri/28420
dc.language.isoeng
dc.publisher.countryEstados unidos
dc.publisher.departmentInstituto de Física - IF (RMG)
dc.rightsAcesso Aberto
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectThermal nanomedicine
dc.subjectCell membrane nanoparticles
dc.subjectSPION
dc.subjectCancer
dc.subjectGlioblastoma
dc.titleNear infrared biomimetic hybrid magnetic nanocarrier for MRI-guided thermal therapy
dc.typeArtigo

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
Artigo - João Victor Ribeiro Rocha - 2025.pdf
Tamanho:
16.21 MB
Formato:
Adobe Portable Document Format

Licença do Pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: